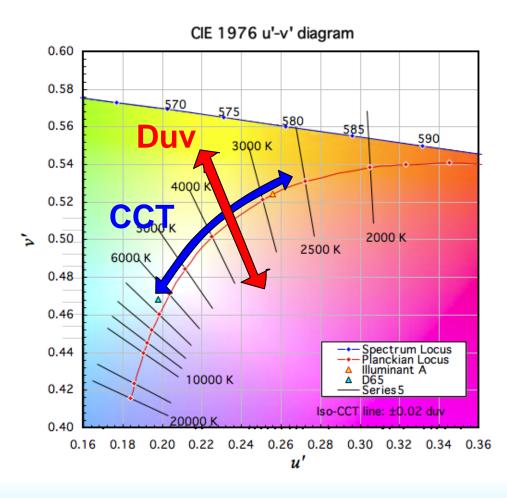
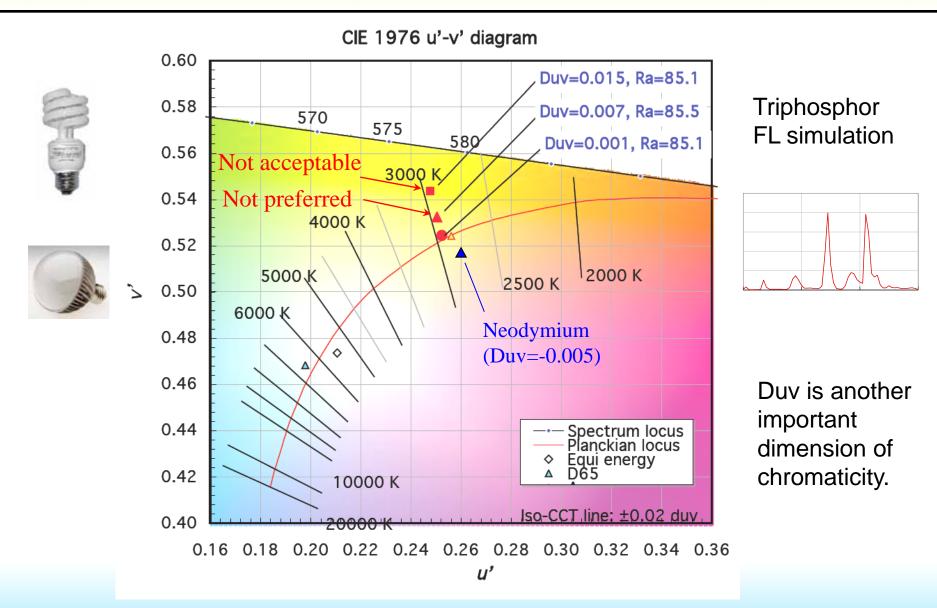

Calculation of CCT and Duv and Practical Conversion Formulae


Yoshi Ohno Group Leader, NIST Fellow

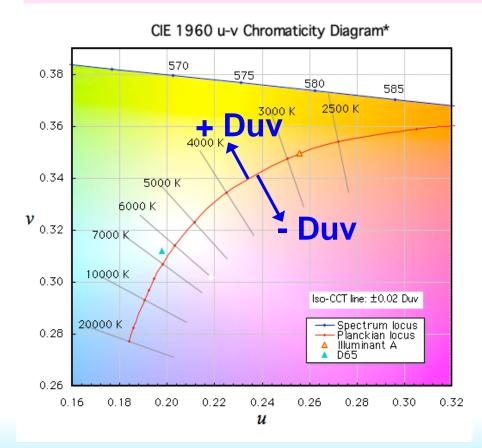
Optical Technology Division National Institute of Standards and Technology Gaithersburg, Maryland USA

White Light Chromaticity

Duv often missing


Lighting Facts Label

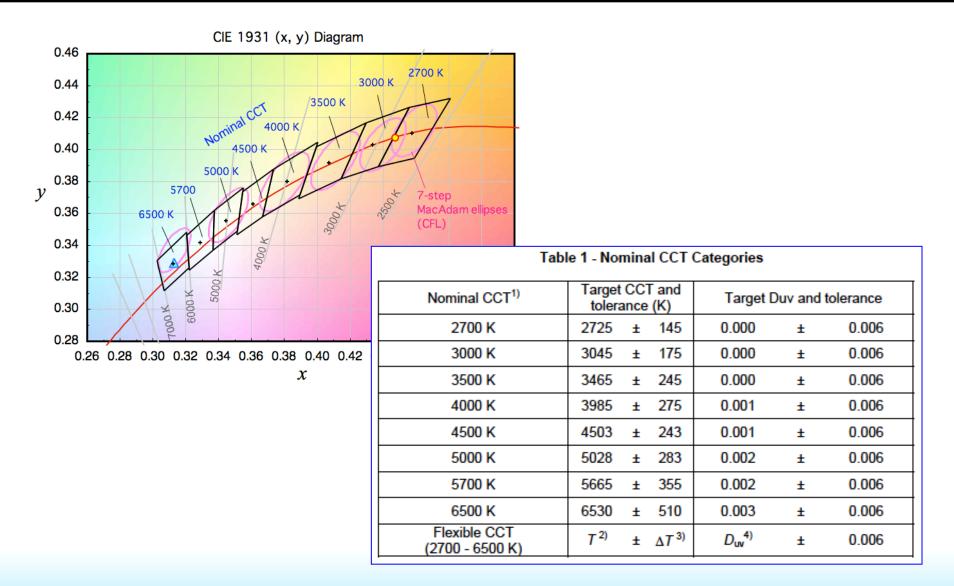
CCT and CRI do not tell the whole story of color quality


CCT and CRI do not tell the whole story

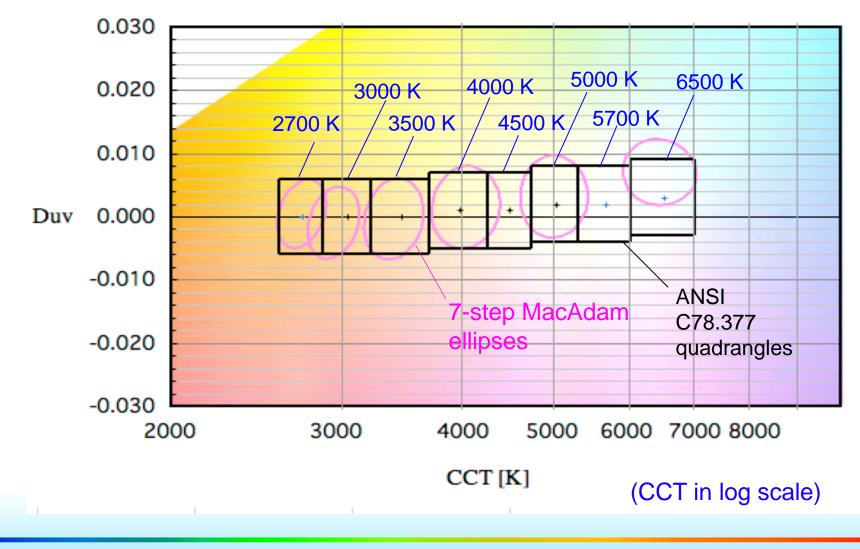
Duv defined in ANSI standard

Closest distance from the Planckian locus on the (u', 2/3 v') diagram, with + sign for above and - sign for below the Planckian locus. (ANSI C78.377-2008)

Symbol: D_{uv}


CCT and Duv can specify the chromaticity of light sources just like (x, y).

The two numbers (CCT, Duv) provides color information intuitively. (x, y) does not.


Duv needs to be defined by CIE.

ANSI C78.377-2008 Specifications for the chromaticity of SSL products

CCT- Duv chart

Correlated Color Temperature (CCT)

Temperature [K] of a Planckian radiator whose chromaticity is closest to that of a given stimulus on the CIE (u',2/3 v') coordinate.

570 0.38 575 580 585 2500 K 3000 K 0.36 4000 K 0.34 5000 K 6000 K v 0.32 7000 K 10000 K 0.30 Iso-CCT line: ±0.02 Duv 20000 K Spectrum locus 0.28 Planckian locus Illuminant A D65 0.26 0.24 0.16 0.18 0.20 0.22 0.26 0.28 0.30 0.32 u

CIE 1960 u-v Chromaticity Diagram*

(CIE 15:2004)

CCT is based on the CIE 1960 (*u*, *v*) diagram, which is now obsolete.

CCT is valid within distance 0.05 from the Planckian locus on the $(u', 2/3 \cdot v')$ diagram. (CIE 15: 2004)

CIE 15:2004 Colorimetry, 3rd Edition

APPENDIX E. INFORMATION ON THE USE OF PLANCK'S EQUATION FOR STANDARD AIR

According to the Planck's law, the spectral radiance of a blackbody at thermodynamic temperature T[K] in a medium having index of refraction n is given by

$$L_{e,\lambda}(\lambda,T) = \frac{c_1 n^{-2} \lambda^{-5}}{\pi} \left[\exp\left(\frac{c_2}{n\lambda T}\right) - 1 \right]^{-1}$$
(E.1)

where $c_1 = 2\pi hc^2$, $c_2 = hc/k$, h is Planck's constant, c is the speed of light in vacuum, k is the

T should follow the current International Temperature Scale (ITS-90), therefore,

*c*₂ = 1,4388 x 10⁻² m K.

Therefore, in the current recommendation in CIE 15:2004. colour temperature and correlated colour temperature are calculated using Equ. E.1 with n = 1 (exactly 1), thus no change from the previous practice. This recommendation may be subject to change in the future.

Robertson (1968)

Computation of Correlated Color Temperature and Distribution Temperature, Journal of the Optical Society of America, 58-11, 1968

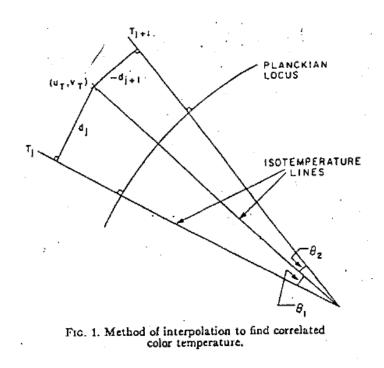
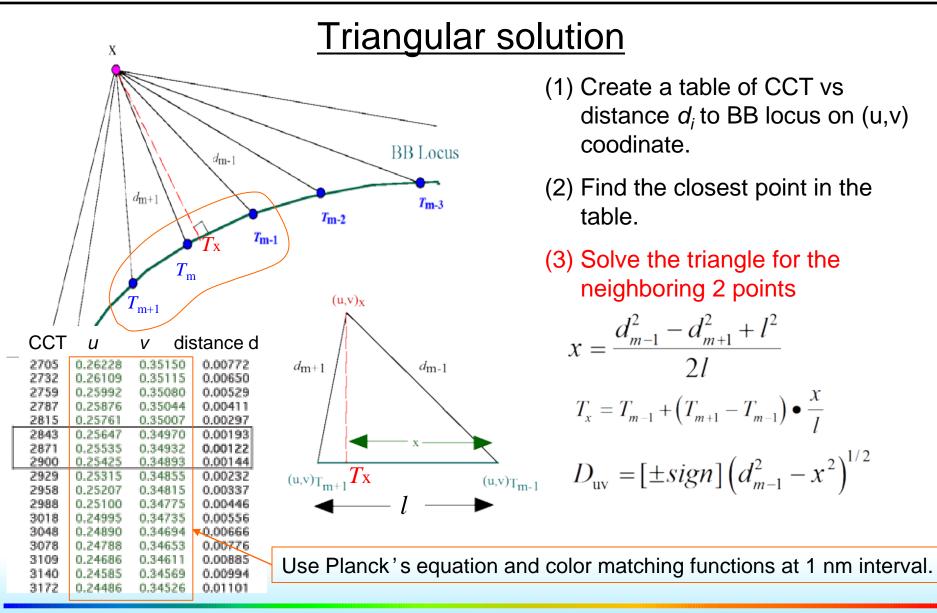
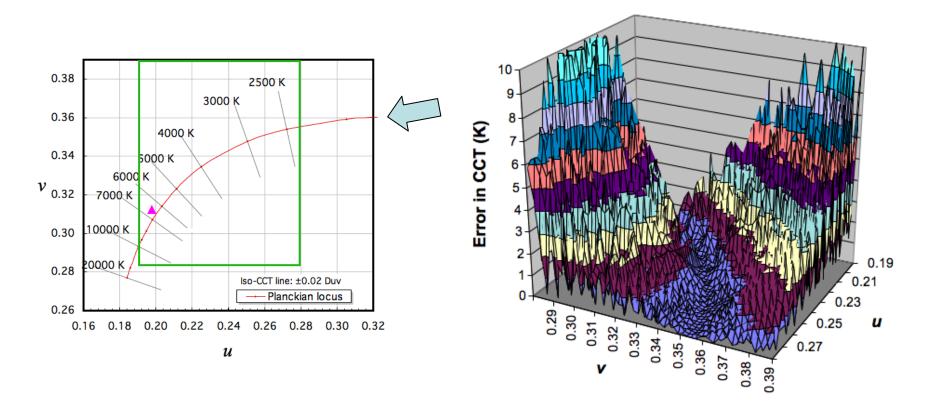



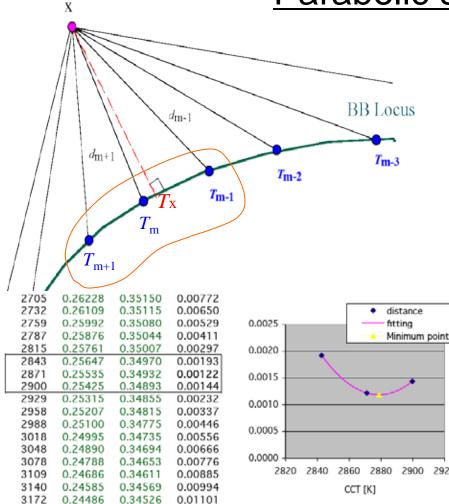
TABLE III. Maximum errors of computed values of correlated color temperature, based on use of the 31 isotemperature lines listed in Table II.


$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Range	Masin	um error
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	rd		urd	ĸ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-10			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-20			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20-30			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30-40			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40-50			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50-60	20 000-16 667		18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60-70	16 667-14 286		9.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70-80			5.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80-90-	12 500-11 111		3.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100-125		0.07	5.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	125-150			.1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150-175			1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175-200	5 714-5 000		1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225-250			0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4 0003 636		0.7
325-350 3 077-2 857 0.03 0. 350-375 2 857-2 667 0.02 0. 375-400 2 667-2 500 0.03 0. 400-425 2 500-2 353 0.04 0. 425-450 2 353-2 222 0.04 0. 450-475 2 222-2 105 0.05 0.	275-300			0.5
350-375 2 857-2 667 0.02 0. 375-400 2 667-2 500 0.03 0. 400-425 2 500-2 353 0.04 0. 425-450 2 353-2 222 0.04 0. 450-475 2 222-2 105 0.05 0.	300-325			0.3
375-400 2 667-2 500 0.03 0. 400-425 2 500-2 353 0.04 0. 425-450 2 353-2 222 0.04 0. 450-475 2 222-2 105 0.05 0.05	325-350			0.2
400-425 2 500-2 353 0.04 0. 425-450 2 353-2 222 0.04 0. 450-475 2 222-2 105 0.05 0.				0.2 .
425-450 2 353-2 222 0.04 0. 450-475 2 222-2 105 0.05 0.				. 0.2
450-475 2 222-2 105 0.05 0.			0.04	0.2
450-475 2 222-2 105 0.05 0			0.04	0.2
				0.2
	475-500	2 105-2 000	0.04	0.2
				0.2
				0.2
				0.2
575-600 1 739-1 667 0.06 0.	575-600	. 1 739-1 667	0,06	0.2

Direct approach (1) to calculate CCT and Duv

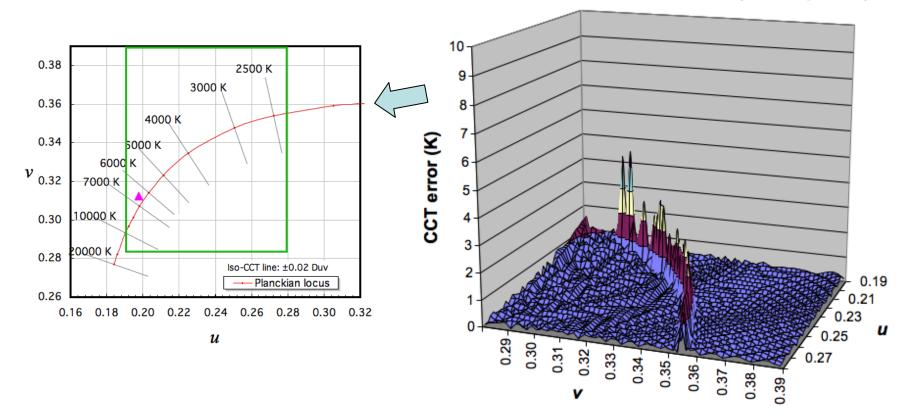
CCT Error in Triangular Solution

CCT error in Triangular sollution (1% step table)


Error increases when the point is far from Planckian locus.

Direct approach (2) to calculate CCT and Duv

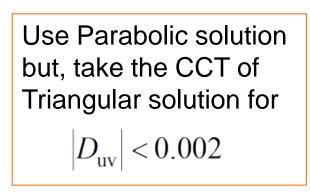
2920


- (1) Create a table of CCT vs distance d_i to BB locus on (u,v) coodinate.
- (2) Find the closest point in the table.
- (3) Parabolic fit for the neighboring 3 points. $d(T) = aT^2 + bT + C$

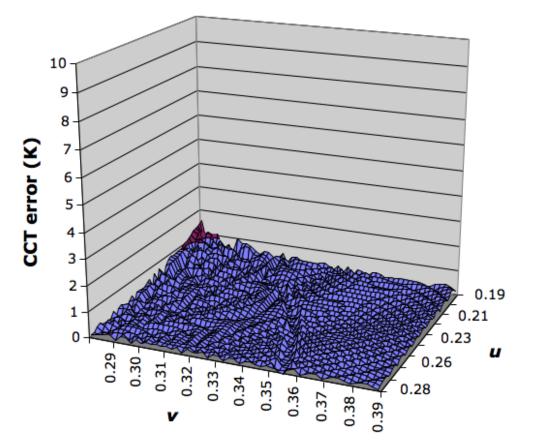
$$d(T)' = 2aT_{x} + b = 0 \quad \because T_{x} = \frac{-b}{2a}$$

$$D_{\rm uv} = [\pm sign] \left(aT_{\rm x}^2 + bT_{\rm x} + C \right)$$

CCT Error in Parabolic Solution


CCT error in Parabolic solution (1 % step table)

Much better, but the problem is on or very close to Planckian locus.



Combined Solution

Error in Combined solution (1 % step table)

Most Accurate Version (cascade expansion)

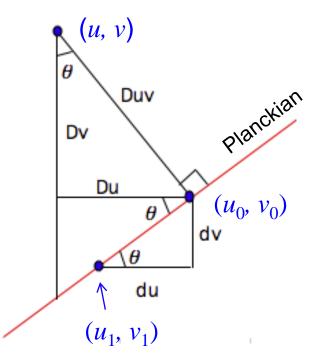
INPUT	х	0.3127		CCT	6503.0											
	У	0.3290		Duv	0.0032											
	u	0.1978														
	V	0.3122														
15 %	step ta	able			1.5 % s	step tak	ble		0.15 9	6 step ta	able		0.015	% step	table	
Color Te			Distance			u	v	distances		u	v	Distance		u		Dista
1000	0.44801	0.35462	0.2537	0	/ 5350.3	0.20813	0.31972	0.012732	6429.7		0.31086	0.003279	6494.3		0.31040	0.
1150	0.41559	0.35725	0.2224	0.1	5430.5	0.20745	0.31898		6438.9	0.20077	0.31080		6495.2		0.31040	0.
1323	0.38439	0.35927	0.1924	0.2	5510.8	0.20680	0.31825		6448.1	0.20072	0.31073		6496.1	0.20047	0.31039	0.
1521	0.35512 0.32827	0.36039	0.1645	0.3	5591.0 5671.3	0.20617	0.31754		6457.4 6466.6			0.003238	6497.0 6498.0		0.31038	0.
2011	0.32827	0.35036	0.1390	0.4	5751.5	0.20556	0.31684		6466.6			0.003229	6498.0		0.31038	0.
2313	0.28281	0.35620	0.0957	0,6	5831.8	0.20498	0.31549		6485.0		0.31033		6499.8		0.31037	0.
2660	0.26431	0.35208	0.0775	0.7	5912.0	0.20388	0.31483		6494.3	0.20048	0.31040		6500.7		0.31036	0.
3059	0.24853	0.34679	0.0614	0.8	5992.3	0.20336	0.31418		6503.5		0.31034		6501.7		0.31035	0.
3518	0.23527	0.34060	0.0470	0.9	6072.5	0.20285	0.31354	0.005191	6512.7	0.20038	0.31027	0.003214	6502.6	0.20044	0.31034	0.
4046	0.22430	0.33382	0.0342	1.0	6152.8	0.20237	0.31292		6522.0	0.20034	0.31021	0.003217	6503.5		0.31034	0.
4652	0.21535	0.32677	0.0228	0.1	6245.1	0.20183	0.31222		6531.2		0.31014		6504.4		0.31033	0.
5350	0.20813	0.31972	0.0127	0.2	6337.4	0.20131	0.31153		6540.4	0.20024	0.31008	0.003229	6505.3		0.31032	0.
6153 7076	0.20237 0.19781	0.31292 0.30655	0.0046	0.3	6429.7 6522.0	0.20082	0.31086		6549.6 6558.9		0.31001	0.003239	6506.3 6507.2		0.31032	0.
8137	0.19423	0.30073	0.0120		6614.2	0.19988	0.30956		6568.1	0.20010	0.30995		6508.1	0.20041	0.31031	0.
9358	0.19143	0.29552	0.0179	0.6	6706.5	0.19943	0.30894		6577.3			0.003278	6509.0		0.31030	0.
10761	0.18923	0.29093	0.0230	A 7	6798.8	0.19901	0.30832		6586.6		0.30976		6510.0		0.31029	0.
12375	0.18751	0.28694	0.0273	0.8	6891.1	0.19859	0.30772		6595.8		0.30969		6510.9		0.31028	0.
14232	0.18615	0.28350	0.0310	0.9	6983.4	0.19820	0.30713		6605.0		0.30963		6511.8		0.31028	0.
16367	0.18507	0.28056	0.0341	1.0		0.19781	0.30655	0.005672	6614.2	0.19988	0.30956	0.003356	6512.7		0.31027	0.
18822	0.18420	0.27806	0.0368		minimum	0.003217			minimum	0.0032125			minimum	0.0032125		
21645	0.18351	0.27593	0.0390		match	15	0.00000		match	9			match	10		
24891 28625	0.18295	0.27412 0.27259	0.0409		T(m-1) T(m)	6429.7 6522.0	0.00328		T(m-1) T(m)	6494.3 6503.5	0.00321		T(m-1) T(m)	6501.7 6502.6	0.00321	
32919	0.18243	0.27129	0.0423		T(m+1)	6614.2	0.00322		T(m+1)	6503.3	0.00321		T(m+1)	6503.5	0.00321	
min	0.00459	0.21120	0.0100			Parabolic s				Parabolic so				Parabolic so		
match	14					а	1.925E-07			а	1.886E-05			а	0.001886	
		distance				b	-3.78E-07			b	-3.77E-05			b	-0.003772	
T(m-1)	5350.25	0.01273				с	1.97E-07			с	1.886E-05			с	0.001886	
T(m)	6152.79	0.00459				A	1.181E-08			A	1.223E-08			A	1.22E-08	
T(m+1)	7075.71	0.00567				B	-0.000154		_	B	-0.000159			B	-0.000159	
						C CCT	0.502682			С	0.5202378 6503.05			C CCT	0.520744 6503.03	
						duv	6504.39 0.00321	ł – – –		duv	0.00321			duv	0.00321	
						Triangular		-		Triangular se				Triangular se		
ed as the reference						T(m-1) u	0.20082			T(m-1) u	0.20048			T(m-1) u	0.20044	
sd s	ns th	ie ref	eren	CE		T(m+1) u	0.19988			T(m+1) u	0.20038			T(m+1) u	0.20043	
					·	T(m-1) v	0.31086			T(m-1) v	0.31040			T(m-1) v	0.31035	
					T(m+1) v	0.30956			T(m+1) v	0.31027			T(m+1) v	0.31034	-	
accuracy					d	0.00			d	0.00			d	0.00		
					CCT	0.00 6503.70			CCT	0.00			CCT	0.00		
						duv	0.00322			duv	6503.03 0.00321			duv	6503.05 0.00321	
rification.						CCT	6504.39	-		CCT	6503.05			Final CCT		
		-				CCT	0304.39			CCT	0303.03				0303.03	
						0.2004	0.3103			0.2004	0.3103			0.2004	0.3103	
						Sign of Duv	1			Sign of Duv	1			Sign of Duv	1	
						oigh or Duv	0.00322			oigh or buy	0.00321			Final Duv		· · · · ·

Input: CCT
$$T(K)$$

Duv D_{uv}

- 1) Calculate (u_0, v_0) of the Planckian radiator at T (K).
- 2) Calculate (u_1, u_1) of the Planckian radiator at T+DT (K). DT=0.01 (K)
- 3) Calculate

$$du = u_1 - u_0$$


$$dv = v_1 - v_0$$

$$u = u_0 + D_{uv} \cdot \sin \theta$$

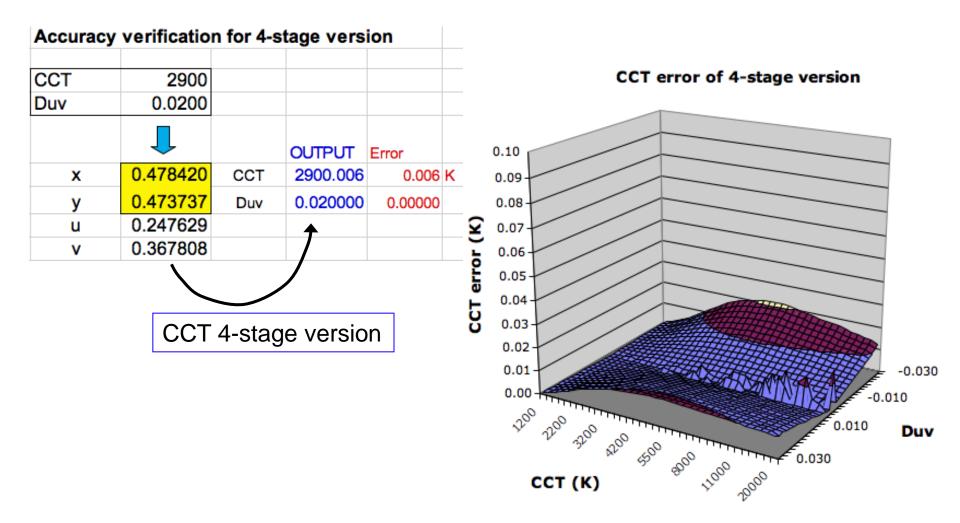
$$= u_0 + D_{uv} \cdot dv / \sqrt{du^2 + dv^2}$$

$$v = v_0 + D_{uv} \cdot \cos \theta$$

$$= u_0 + D_{uv} \cdot du / \sqrt{du^2 + dv^2}$$

$$u' = u$$

$$v' = 1.5v$$


$$x = 9u'/(6u' - 16v' + 12)$$

$$y = 2v'/(3u' - 8v' + 6)$$

(Included in Revision draft of C78.377)

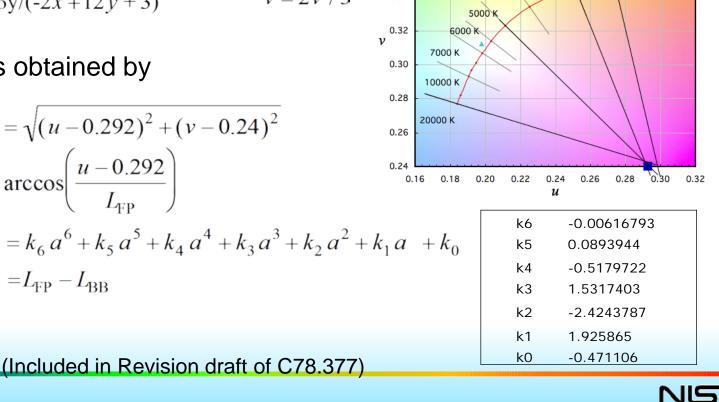
Accuracy of Most Accurate Version (4 stage)

NIST 18

CORM 2011

Simple calculation from (x,y) or (u',v') to Duv

Duv is normally calculated in the process of calculating CCT. Below is a simple approximation formula, without calculation of CCT.


- Convert (x, y) or (u', v') to (u, v)1) u = 4x/(-2x + 12y + 3) $\mathbf{u} = u'$ or v = 2v'/3v = 6y/(-2x+12y+3)
- 2) Duv is obtained by

$$L_{\rm FP} = \sqrt{(u - 0.292)^2 + (v - 0.24)^2}$$

$$a = \arccos\left(\frac{u - 0.292}{L_{\rm FP}}\right)$$

$$L_{\rm BB} = k_6 a^6 + k_5 a^5 + k_4 a^4 + k_3 a^3 + k_2 a^2 + k_1 a$$

$$D_{\rm uv} = L_{\rm FP} - L_{\rm BB}$$

CIE 1960 u-v Diagram*

575

580

3000 K 2500 K

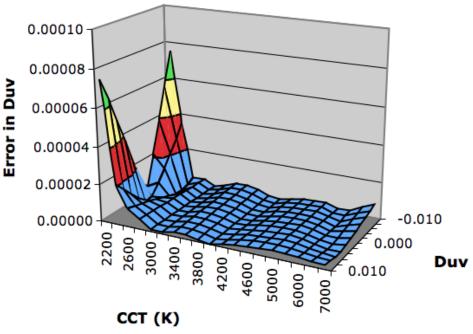
585

570

4000 K

0.38

0.36

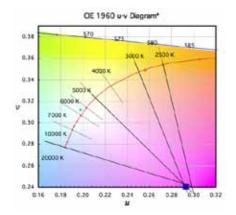

0.34

Simple calculation from (x,y) or (u',v') to Duv

Accuracy of this method

within 0.00001 in the range
from 2600 K to 20000 K and
Duv 0.000 \pm 0.0100.000
 \bullet

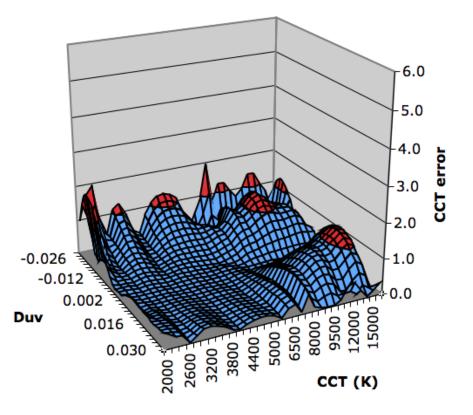
within 0.0001 in the range from 2160 K to 20000 K and Duv 0.000 \pm 0.010

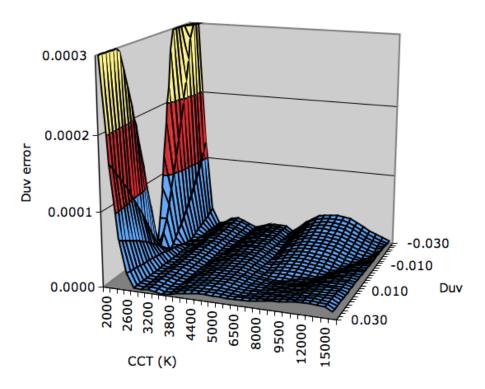

(Included in Revision draft of C78.377)

Simple calculation from (x,y) or (u',v') to (CCT, Duv)

$$\begin{split} &L_{\rm FP} = \sqrt{\left(u - 0.292\right)^2 + \left(v - 0.24\right)^2} \\ &a_1 = \arctan\left(\left(v - 0.24\right)/(u - 0.292)\right), \ if \ a_1 \ge 0, \ a = a_1; \ if \ a_1 < 0, \ a = a_1 + \pi \\ &L_{\rm BB} = k_{06} \, a^6 + k_{05} \, a^5 + k_{04} \, a^4 + k_{03} \, a^3 + k_{02} \, a^2 + k_{01} \, a + k_{00} \\ &D_{\rm uv} = L_{\rm FP} - L_{\rm BB} \end{split}$$

For a < 2.54; $T_1 = 1/(k_{16} \cdot a^6 + k_{15} \cdot a^5 + k_{14} \cdot a^4 + k_{13} \cdot a^3 + k_{12} \cdot a^2 + k_{11} \cdot a + k_{10})$ For $a \ge 2.54$; $T_1 = 1/(k_{26} \cdot a^6 + k_{25} \cdot a^5 + k_{24} \cdot a^4 + k_{23} \cdot a^3 + k_{22} \cdot a^2 + k_{21} \cdot a + k_{20})$



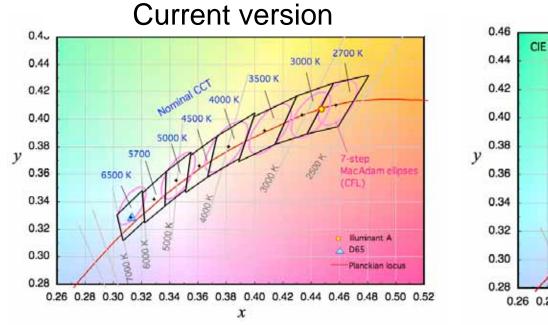

For a < 2.54; $\Delta T_{c1} = (k_{36} \cdot a^6 + k_{35} \cdot a^5 + k_{34} \cdot a^4 + k_{33} \cdot a^3 + k_{32} \cdot a^2 + k_{31} \cdot a + k_{30}) * (L_{BB} + 0.01) / L_p * D_{uv} / 0.01$ For $a \ge 2.54$; $\Delta T_{c1} = 1/(k_{46} \cdot a^6 + k_{45} \cdot a^5 + k_{44} \cdot a^4 + k_{43} \cdot a^3 + k_{42} \cdot a^2 + k_{41} \cdot a + k_{40}) * (L_{BB} + 0.01) / L_p * D_{uv} / 0.01$ $T_2 = T_1 - \Delta T_{c1}, \quad c = \log(T_2)$ For $Duv \ge 0$; $\Delta T_{c2} = (k_{56} \cdot c^6 + k_{55} \cdot c^5 + k_{54} \cdot c^4 + k_{53} \cdot c^3 + k_{52} \cdot c^2 + k_{51} \cdot c + k_{50})$ For Duv < 0; $\Delta T_{c2} = (k_{66} \cdot c^6 + k_{65} \cdot c^5 + k_{64} \cdot c^4 + k_{63} \cdot c^3 + k_{62} \cdot c^2 + k_{61} \cdot c + k_{60}) \cdot |D_{uv} / 0.03|^2$ $T_{FINAL} = T_2 - \Delta T_{c2}$

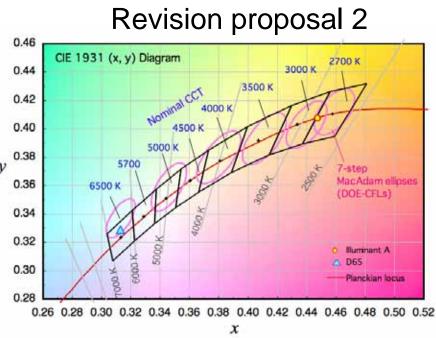
i	k <i>i</i> 6	k <i>i</i> 5	k <i>i</i> 4	k <i>i</i> 3	ki2	ki1	k <i>i</i> 0
0	-3.7146000E-03	5.6061400E-02	-3.307009E-01	9.750013E-01	-1.5008606E+00	1.115559E+00	-1.77348E-01
1	-3.2325500E-05	3.5700160E-04	-1.589747E-03	3.6196568E-03	-4.3534788E-03	2.1595434E-03	5.308409E-04
2	-2.6653835E-03	4.17781315E-02	-2.73172022E-01	9.53570888E-01	-1.873907584E+00	1.964980251E+00	-8.58308927E-01
3	-2.3524950E+01	2.7183365E+02	-1.1785121E+03	2.51170136E+03	-2.7966888E+03	1.49284136E+03	-2.3275027E+02
				6.40976356945E+0			
4	-1.731364909E+062	2.7482732935E+07 -	1.81749963507E+08	8	-1.27141290956E+09	1.34488160614E+09+	-5.926850606E+08
5	-9.4353083E+02	2.10468274E+04	-1.9500061E+05	9.60532935E+05	-2.65299138E+06	3.89561742E+06	-2.3758158E+06
6	5.0857956E+02	-1.321007E+04	1.4101538E+05	-7.93406005E+05	2.48526954E+06	-4.11436958E+06	2.8151771E+06

Simple calculation from (x,y) or (u',v') to (CCT, Duv)

Accuracy of this method

- Practical calculation and conversion formulae for CCT and Duv have been developed.
- Accuracies of some of the formulae will be further improved.
- The use of CCT and Duv (rather than x, y or u', v' chromaticity coordinates) is recommended to specify the chromaticity of lighting sources.




THANK YOU for your attention.

Contact: ohno@nist.gov

Proposed revision of ANSI C78.377

- All center points to be moved onto the Planckian locus.
- This proposal is pending due to a need for vision experiments.
- Anecdotes say people prefer below the Planckian locus.
- NIST is funded by DOE to conduct vision experiments using STLF.

CCT (K) difference between 3rd stage and 5th stage

1	I I	x																			-						
		0.2	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.3	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	-0.4	0.41	0.42	0.43	0.44	0.45
ν	0.6		-0.01	0.02	-0.01	0.01				-0.01				-0.01	0.00	-0.01	0.00			-0.01					-0.01		0.00
-	0.59	-0.04	-0.04	-0.02	0.01	0.01		0.00		0.00	-0.07	1	0.01			-0.01										-400	00 K 🗌
	0.58	-0.05	-0.03	-0.02	-0.05	700	00 K	-0.02		-0.01	-0.16	000	K	0.00	0.00	0.00	-0.01	5000	1	0.00	-0.01	-0.01	0.00	-0.01			
		-0.02	-0.02	0.01	-0.02					-0.02		-0.02			0.00	0.00	-0.01	0.00		-0.01		0.00			- /	0.00	-0.01
	0.56	-0.03	-0.03	-0.01	-0.01	-0.02	0.00	N		-0.01		-0.01	-0.01	-0.01		-0.01	0.00	0.00			-0.01					0.00	
	0.55	0.00	-0.01	-0.02	0.00	-0.02	0.01	-0.03	0.00	-0.03	0.00	-0.01	\-0.01	-0.02	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.00	-0.01	-0.01	-0.01	0.00	-0.01	-0.01
	0.54	-0.10	0.00	0.01	-0.01	0.01	0.00	0,00	-0.02	-0.01	0.00	-0.01	0.00	0.00	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.00	-0.01/	-0.01	-0.01	-0.01
	0.53	-0.06	-0.03	0.00	-0.05	-0.02	0.00	-0.04	-0.02	-0.02	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.01	00,00	-0.01	-0.01	0.00	-0.01	-0.01	-0.0⁄1	-0.01	0.00	-0.01
	0.52	0.00	0.00	0.00	-0.01	-0.01	-0.01	-0.01	0.00	-0.01	-0.01	-0.01	-p.01	-0.01	-0.01	-0.01	-0.01	-0/.01	-0.01	-0.01	-0.01	-0.01	0.00	-0/.01	0.00	-0.01	-0.01
	0.51	-0.05	-0.02	-0.03	-0.01	0.01	0.00	-0.01	\0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.00	0.00	-0.01	-0.01	/0.01	0.00	0.00	0.00
	0.5	0.01	-0.03	-0.01	-0.03	-0.01	-0.02	-0.01	-`Q.03	-0.01	-0.02	-0.01	0,00	-0.01	0.00	-0.01	-0.01	0.00	-0.01	-0.01	-0.01	-0.01	-0.01⁄	0.00	0.00	0.00	0.00
	0.49	-0.07		-0.04			-0.03		· · ·	-0.01					0.00			/0.00	-0.01	-0.01	-0.01	0.00	-0.01	-0.01	-0.01	-0.01	0.00
	0.48	0.05	0.00	-0.03	-0.02	0.01	-0.02		-0.01		0.00			-0.01		-0.01				-0.01		0.00	-ø.01	0.00	0.00	0.00	0.00
	0.47		-0.04	0.00	0.01						-0.01				-0.01			0.00					/-0.01		0.00	0.00	-0.01
	0.46	0.01	-0.01	-0.01				-0.01		1			-					-0.01					0.00				-0.01
	0.45	0.00		-0.03		-0.01		-0.02		1	-0.01			-0.01							0.00		-0.01		0.00	0.00	0.00
		-0.01	0.01	0.00	-0.01	-0.01	0.01				-0.01				-0.01			-0.01			0.00		-0.01			0.00	0.00
	0.43	0.04	-0.05	-0.02	-0.02		-0.02				-0.01				-0.01				-0.01	0.00			-0.01		0.00	-0.01	0.00
		-0.04		-0.07		-0.02	-0.01	-0.01						-0.01				-0.01					-0.01	0.00			0.00
		-0.01		-0.05	0.00	- duy	(-0.0))5 lim		0.00	20.01	-0.01						-0.01					-0.01				
		-0.14	-0.02	-0.04	0.01							-0.01			-0.01					-0.01			0.00			-0.01	0.00
		-0.08	-0.05	0.00	0.00			-0.02		-0.01		-0.01			-0.01					-0.01			-0.01			-0.01 -0.01	-0.01
	0.38		-0.10	0.00		-0.03					-0.01	-0.01			-0.01	0.00		-0.01	0.00		0.00		-0.01 -0.01			0.00	0.00
		-0.06		-0.08										-0,01				-0.01			0.00		-0.01			0.00	0.00
	0.35		-0.09	-0.06		-0.01		-0.02							-0.01		-0.01	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00
	0.34	0.00			0.00									-0.01						-0.01					0.00	0.00	0.00
		2000												-0.01						-0.01			-0.01	0.00	0.00	0.00	0.00
														-0.01		-0.01		-0.01/			-0.01			0.00	0.00	0.00	0.00
		-0.13														-0.01				0.00				0.00	0.00	0.00	0.00
	0.3			-0.14											-0.01			-0,01			0.01			0.00	0.00	0.00	0.00
														-0.01				0.01			0.00			0.00		0.00	0.00
		#REF!				0.00												0.00					0.00	0.00	0.00	0.00	0.00
	0.27	#REF!	#REF!	#REF!	-0.08	0.00	-0.04	-0.03	-0.02	-0.02	-0.01	0.00	-0.01	-0.01	0.00	0/00	-0.0/1	-0.01	0.00	-0 1	2 21	oê îr		0.00	0.00	0.00	0.00
	0.26	#REF!	#REF!	#REF!	#REF!	-0.05	-0.05	0.01	-0.03	-0.01	-0.01	-0.01	-0.01	-\0.01			9.00		0.00	-0 an	v=0.	05 lin	nit ør	0.00	0.00	0.00	0.00
		#REF!										-0.04	-0.02			0.00	/0.01	0.00	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		#REF!													0.00		0.00		0.00			0.00	0.00	0.00	0.00	0.00	0.00
		#REF!												-0.01					-0.01	0.00	0.00		0.00	0.00	0.00	0.00	0.00
		#REF!														-0.01	-0.01	-0.01	0.00	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		#REF!													-0.03	0.01		0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00
		#REF!													0.23	-0.01	-0.01	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00
														-0-69		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		#REF!											#REF!	#REF!	2.22	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		#REF!													-0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		####	
		#REF!													0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		-	####	
		#REF!													-0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	####			
		#REF! #REF!												#REF! -0.01	-0.01	0.00	0.00	0.00	0.00	0.00	0.00		####				
		#REF!												0.00	0.00	0.00	0.00	0.00	0.00				####				
		#REF!												0.00	0.00	0.00	0.00	0.00		####							####
		#REF!												0.00	0.00	0.00	0.00			####							####
	0.1	HIXEP :	anver !	#INEP!	#IXEF1	#IVEF1	and the	#IXEP!	#INEP!	WINEP!	#IXEP!	#IXEP!	0.00	0.00	0.00	0.00	0.00	0.00			****	****	πππ	πππ	****	****	н. н. н. н.

Summary

- Duv is important for color quality of light sources.
- Duv is often neglected in specifications.
- Parabolic and triangle combined solution works well for CCT calculation.
- 1 % step table provides enough accuracy (<1 K for 1000 to 10000 K, <2 K up to 20000 K, Duv ± 0.03)
- Most Accurate Version (cascade expansion),
- Conversion from (CCT, Duv) back to (x,y),
- Simple calculation from (*x*,*y*) or (*u*',*v*') to Duv,
- Simple calculation from (x,y) or (u',v') to (CCT, Duv) have been developed.

