Progress in Few-Photon Metrology at NRC

Jeongwan Jin and Angela Gamouras

CORM2019
Outline

1. Few-photon metrology for single-photon detectors and sources
2. Single-photon detection efficiency calibration system
3. Single-photon detectors
4. Single-photon sources
Few-photon metrology laboratory

Single-Photon Detector Calibration System
Quantum Dot Nanowire Single-Photon Source
Superconducting Nanowire Single-Photon Detector
Few-photon metrology for quantum photonics

ETSI GS QKD 011 V1.1.1 (2016-05)

Quantum Key Distribution (QKD);
Component characterization: characterizing optical components for QKD systems

C. J. Chunnilall et al., Optical Engineering 53, 081910 (2014)
SI-traceable detection-efficiency calibration

NRC Absolute Cryogenic Radiometer

Transfer Standard Radiometer

Single-Photon Detector
Detection efficiency characterization

\[\eta_{eff} = \frac{E_{det}}{E_{in}} = \frac{hc}{\lambda} \times \frac{N_{SPAD}}{E_0 \times \prod_{i=1}^{2} T_i} = \frac{hc}{\lambda} \times As \times \frac{Q_0 \times Q_{SPAD}}{Q_1 \times Q_2} \]

h: Planck constant
\(\lambda \): wavelength
\(N_{SPAD} \): number of photons detected by SPAD
\(T_i(i = 1,2) \): filter transmission
s: TSD spectral responsivity
A: amplification
\(Q_i(i = 0,1,2) \): ratio \(V_i/V_{i,mon} \)
\(Q_{SPAD} \): ratio \(N_{SPAD}/V_{SPAD,mon} \)

NATIONAL RESEARCH COUNCIL CANADA
Measurement apparatus

Active area of SPAD
Measurement results

![Graph showing detection efficiency vs. counts per second]

- **TSD**
- **SPAD**
- **F1**
- **F2**
- **BS**
- **LENS (f=75 mm)**
- **LASER**
- **AMP**
- **3D SCAN**
- **NRC**
- **Meters & Counters**
- **NIST**

Graph Details
- x-axis: Counts per second
- y-axis: Detection efficiency
- Data points for NRC and NIST
Single-photon detector at NRC in collaboration with NIST

Type: superconducting nanowire
Material: Tungsten silicide
Operating temperature: 0.7 K
Wavelengths: 800, 1064, and 1550 nm
Efficiencies: > 90 %
Timing resolution: 80 ps
Dark counts: < 1 Hz
Recovery time: 30 ns
Single-photon source towards quantum candela

PTB: NV-centered diamond

NPL: artificial atom

INRIM: PP-lithium niobate crystal

Single-photon source at NRC
in collaboration with NRC Advanced Electronics and Photonics & Security and Disruptive Technology

Type: semiconductor quantum dot nanowire

Material: InAs-InP

Operating temperature: <10 K

Wavelength: 930 nm

Lifetime\(^1\): 1.6 ns

Bandwidth\(^1\): 4 \(\mu\)eV

Efficiency\(^1\): 43 % (di-directional -> total 86 %)

Single-photon purity\(^1\): 0.002 (0 for a true single photon)

Towards single-photon metrology

- single-photon detection efficiency measurement
- quantum candela development
- single-photon detection technique development