

Northern Illinois University

An Open Source Software Solution for Data Acquisition, Management, and Analysis for Spectrometric Measurements

Kevin B. Martin, William J. Mills, III, Matthew Bikun (Northern Illinois University, Dekalb, IL, USA)

Northern Illinois BEEEAM Lab

- Building Energy Efficiency, Ergonomics, and Management Lab
 - Building Management System (BMS)
 - Controlled Environment Agriculture
 - Indoor Environmental Impacts on Humans
 - Wearable Sensor Array

A Necessity for Streamlined Data Processing

- Extracting value from data acquired from multiple sensors in a timely and reliable manner requires:
 - Organization
 - Consistent formatting
 - Integrity of data throughout its lifecycle
- Finding meaning in data becomes difficult and inefficient without an optimized approach to data acquisition, management, and analysis

Lesson's Learned from Welding Lab Monitoring

- Indoor air-quality study conducted as an undergraduate research project
 - Multiple aerosol monitoring instruments were deployed over the course of the semester
 - 35+ parameters were acquired on numerous occasions for multiple hours

A proper data organization, management, and analysis strategy was <u>NOT</u> utilized resulting in:

1) Inconsistent formatting
 2) Overall disorganization
 3) Data loss

Open Source Solution

Python 3 Programming Language

- Easy readability and uncluttered simple-to-learn syntax
- Community Driven
 - Third-party packages and learning resources freely available
- Multi-platform
- Viable option for building complex multi-protocol network applications

https://sqlite.org/copyright.html

SQLite Relational Database Management Software

- Low computational overhead
 - Ideal for on-device use or implementation in an Internet of Things (IOT) system
 - Serverless operability
 - 140 TB maximum file size
- Utilizes Structured Query Language (SQL)
 - ANSI standard
- Native Python support

R-Statistical Programming Language

- Fully fledged statistical programming environment
- Multi-platform
- R-Studio: Integrated development environment for the R-language
 - Dynamic GUI's
 - Free for personal use* (License tiers for commercial use)
- RSQLite
 - Interfaces SQLite databases with R workspaces
- Powerful
 - Quickly analyze "big-data"

Low Cost Micro-Controllers & Micro-Computers

- Raspberry-Pi Computers
 - Low-cost Linux based micro-computer
 - Operates within an open-source ecosystem
 - Full computer capabilities
 - Data logging and data transmitting
 - Permits connectivity with multiple spectrometers and other sensors
 - CO₂, particulate, temperature, humidity
- Arduino
 - Open source micro-controller platform that allows simple connectivity with hardware

Handling Multiple Spectrometers

Micro-Computer Controlled Sensors Measurements are sent directly to the database in a standardized

format using Python based code

<u>Windows Desktop Sensors</u> Python scripts scrub CSV files output from desktop software and the reformatted data is input into the database

R7	79.883	79.894	79.902	79.901	79.901		2	SQLiteSt	udio	(3.2.1) - [E	xample	e (GHZ	Z_Exampl	e)]				
R8	54.72	54.732	54.786	54.756	54.777			Database	e St	tructure	View	Tool	ls Help					
R9	1.9884	1.9961	2.1337	2.0466	2.1006		1	< .#						(J. 1997)			0	la cilia
R10	82.861	82.842	82.89	82.825	82.923	ata Eaumat	×		-				4		<u> </u>	12 (13	-) 92
R11	73.968	73.963	73.994	73.935	74.068	ata Format	Str	ucture	Dat	ta Con	straints	In	ndexes	Trigg	gers [DDL		
R12	76.017	75.95	76.078	75.981	76.148		Gri	id view	For	m view								
R13	82.285	82.282	82.323	82.278	82.357							_	_	_		00	8-8	
R14	96.417	96.425	96.43	96.432	96.434		2	-	- 5		X [K (< 1	2	9 🖷		1 ₂ 4	<u> 1</u>
R15	71.379	71.367	71.431	71.387	71.45			Device	ID	💇 DateTi	ime	W	Vavelengt	h Ir	ntensity			
							22	GHZ_1		2019-10-0				401	,	, III.		
Bilirubin IE(0.90943	0.90869	0.90899	0.90887	0.90989			GHZ_1		2019-10-0				102	0	-		
Bilirubin A/	0.006772	0.006771	0.006772	0.006771	0.00677	vice,Date,Time,Wavelength,measure	24	GHZ_1		2019-10-0				103	0	,)		
						vice,Date,Time,Wavelength,measure	25	GHZ_1		2019-10-0					0.0000531			
lambda fro	380	380	380	380	380	vice,Date,Time,Wavelength,measure	26	GHZ_1		2019-10-0					0.0000983	-		
lambda to /	750	750	750	750		vice,Date,Time,Wavelength,measure		GHZ_1	1	2019-10-0)2 12:45	i:15	4	106	0.000125	i		
stepwidth	1	1	1	1	4			GHZ_1		2019-10-0			4	107	0.000129)		
peak wave	602.7	602.5	602.9	600.1	601.9	vice,Date,Time,Wavelength,measure	29	GHZ_1		2019-10-0					0.000137	_		
peak powe	0.02273	0.022684	0.022589	0.022597	0.022632	vice,Date,Time,Wavelength,measure		GHZ_1		2019-10-0					0.000163	-		
radiometric	3.3001	3.2966	3.2963	3.297	3.2987	vice,Date,Time,Wavelength,measure	31	GHZ_1		2019-10-0					0.000189	-		
radiometric	W/m2	W/m2	W/m2	W/m2	W/m2	vice,Date,Time,Wavelength,measure	32	GHZ_1		2019-10-0					0.000215	_		
FWHM	118.3	118.1	118.7	118.7	118.7			GHZ_1		2019-10-0 2019-10-0					0.000242	-		
center war	599.4	599.2	599.3	599.2	599.2	vice,Date,Time,Wavelength,measure		GHZ_		2019-10-0					0.000207	_		
centroid w	585.5	585.4	585.4	585.4		vice,Date,Time,Wavelength,measure	36	GHZ_1	-	2019-10-0					0.000467	_		
DLI /(mol/m	599.4	599.2	599.3	599.2	599.2	vice,Date,Time,Wavelength,measure	37	GHZ_1		2019-10-0					0.000547	-		
						vice,Date,Time,Wavelength,measure	38	GHZ_1		2019-10-0		_		117	0.00057	-		
samplenun	1	2	3	4	5		30	GHZ_1	1	2019-10-0)2 12:45	i:15	4	118	0.000594	4		
wavelengt	intensity /(vice,Date,Time,Wavelength,measure vice,Date,Time,Wavelength,measure	40	GHZ_1		2019-10-0	02 12:45	i:15	4	19	0.000656	5						
380	0	0	0	0	0	vice, Date, Time, Wavelength, measure	41	GHZ_1		2019-10-0			4		0.000757	-		
381	0	0	0	0	0	vice,Date,Time,Wavelength,measure		GHZ_1		2019-10-0					0.000832	-		
382	0	0	0	0	0		43	GHZ_1	-	2019-10-0					0.000916	_		
383	0	0	0	0	0		44	GHZ_1	-	2019-10-0					0.001014	_		
384	0	0	0	0	0		45	GHZ_1	-	2019-10-0 2019-10-0					0.001066	-		
385	0	0	0	0	0	Chandradhan da anna an t	46	GHZ_1 GHZ_1		2019-10-0					0.001126	-		
386	0	0	0	0	0	Standardized comma separate	48	GHZ_	-	2019-10-0					0.001221	_		
387	0	0	0	0	0	format	49	GHZ_1		2019-10-0					0.001555	_		
388	0	0	0	0	0		50	GHZ_1		2019-10-0					0.001622	-		
389	0	0	0	0	0		51	GHZ_		2019-10-0					0.001721	_		
390	0	0	0	0	0			CU7 -		11/2/201/		_			0.001020	_		
391	0	0	0	0	0			Evamel		7 Example	a							
							1	Exampl	ie (GH	Z_Example)							

5

£2

Filter data

Simple DB Connection

RSQLite

- Freely available and frequently maintained R Library package
- Allows interfacing of SQLite databases from within R
- Allows database editing and creation from within R
- Once in R, data can be analyzed using other community created packages
 - PCA

File Ed	lit Code Viev	v Plots Session	n Build	Debug P	rofile To	ols	Help
••••••	🗟 🕣 📲 🖷		Go to file	/function		Add	lins 👻
Conso	le C:/sqlite/dbs/	*					
<pre>> getwd() [1] "C:/sqlite/dbs" > db<-dbConnect(SQLite(),dbname="GHZ_Example.db") > dbListTables(db) [1] "Example"</pre>							
> dbL [1] "	istFields(d DeviceID" data<-dbGet	b,"Example") "DateTime" Query(db,"se	"Wave			ity"	
	eviceID			velength			
1 2		9-10-02 12:4		381	0.0000		
3		9-10-02 12:4 9-10-02 12:4			0.0000		
4		9-10-02 12:4			0.0000		
5	GHZ_1 201	9-10-02 12:4	5:15	385	0.0000	000	
6	GHZ_1 201	9-10-02 12:4	5:15	386	0.0000	000	
7	GHZ_1 201	9-10-02 12:4	5:15	387	0.0000	000	
8	GHZ_1 201	9-10-02 12:4	5:15	388	0.0000	000	
9	GHZ_1 201	9-10-02 12:4	5:15	389	0.0000	000	
10	GHZ_1 201	9-10-02 12:4	5:15	390	0.0000	000	
11	GHZ_1 201	9-10-02 12:4	5:15	391	0.0000	000	
12		9-10-02 12:4			0.0000		
13		9-10-02 12:4			0.0000		
14	GHZ_1 201	9-10-02 12:4	5:15	394	0.0000	000	
15	GHZ_1 201	9-10-02 12:4	5:15	395	0.0000	000	

R-Based Lighting Calculations

- R based programs can be tailored to user needs
- Ideal for spectrometric data given the intensity values assigned to each wavelength

	^
Photopic_Area	1.5782667
Photopic_Area_Rel	69.7114267
Scotopic_Area	0.8269033
Scotopic_Area_Rel	36.5239961
Photopic_lux	1077.9593133
Scotopic_lux	1405.7355624
SP_Ratio	1.3040711
сст	2861.6189645
x	1.7278334
Y	1.5785038
z	0.5463422
сст_х	0.4484758
сст_у	0.4097158
skewness	0.5506112
kurtosis	2.1174859
Melanopic_lx	537.9356395
CLA	986.7349954
cs	0.5284402

Values derived from example data

Principal Component Analysis

Principal Component Analysis

-20 -

-30

-10

PC1 (59.9% explained var.)

0

10

20

-20

Transmission Glasses 6500K - 2700K PCA

Other R Realted Benefits

- Plotting libraries (ggplot & ggspectra)
- Photobiology (agricultural lighting parameter calculator)

16

NIL

- Combination of SQLite and R in conjunction with Python provides a flexible, highly capable pathway for data set management and analysis
- Conceptually simple
 - Allows for template like approach
- Implementation
 - Sensor integration still can be problematic
 - Python code not always supplied by manufacturer