Improving Non-dispersive Infrared (NDIR) Sensors for Greenhouse Gas Monitoring

Howard W. Yoon
1. Motivation
2. Basic concepts, technical approach
3. NIST design for NDIR and comparisons to Picarro CRDS
4. Conclusion and future work
Keeling curve (from Mauna Loa)

- Measurements using non-dispersive infrared (NDIR) sensor
- Calibrated daily using standard gas bottles
- CO₂ concentrations traceable to manometric techniques

http://scrippsco2.ucsd.edu/
Historical CO₂ levels and projection

http://scrippsco2.ucsd.edu/
Ultimate goal of real-time CO$_2$ monitoring using distributed sensor networks

1. In order to reduce CO$_2$ emissions, we need to measure both sources and sinks.
2. Denser sensor grid is needed.
3. Constant calibrations using standard gases are expensive.
4. Better sensors are needed.

(2002 CO$_2$ emissions map by Jesse Allen, based on data from the Vulcan Project.)
Use of commercial NDIR sensors

Use of a commercial NDIR at the heart of the NOAA Tall Tower analysis system

Picarro CRDS system Limited to NIR where lasers exist
Technical Approach

- Gas concentrations measured using Beer-Lambert law
- Use of broad-band lamp sources
- Dual-band filters (on/off resonance wavelength)
- Typically use pyroelectric detectors with modulated source
Beer-Lambert law

\[A = \varepsilon l c \]

- **\(A \)**: absorbance
- **\(\varepsilon \)**: Molar absorptivity
- **\(l \)**: path length of the sample
- **\(c \)**: concentration

Need to adjust path length for desired sensitivity (we use a 60 cm path length)

Calibrations using standard gas bottles (traceable to gravimetric or manometric standards)
Why now?

Development of the Ambient Radiation Thermometer
- 8 um to 14 um filter
- ZnSe lenses
- Pyroelectric detector
Internal view of the ART

H. W. Yoon, et al.
"Improvements in the design of thermal-infrared radiation thermometers and sensors,"
Repeatability of < 2 mK over 5 days
Resolution of < 1 mK noise-equivalent temperatures at room temperatures
1. Traceable to standard gases
2. Signal of NDIR depends upon
 • Internal set temperatures
 • Detector responsivity
 • Source stability
 • Source frequency
 • Light-pipe stability of transmittance
 • Humidity
Tungsten lamp (5 V 0.06 A) with lifetime of 100,000 hours (11 years of continuous operation)
Pulsed with sine-wave signal from a function generator at 3.9 Hz

Copper, straight-tubing light pipe (0.5 inch diameter) 60 cm long

CaF lenses inside a temperature-stabilized tube

Sealed using sapphire windows at both end of tube

One of two filters at 3.9 um (off) or at 4.26 um (on)

ZnSe windowed TE-cooled pyroelectric detector with preamplifier
Lockin detection system used
Upper view of setup
Light-pipe effect of tubing

Regular copper straight pipe works well
Will also use ultra-polished SS tube and Au-coated Cu pipe
Comparisons to Picarro cavity ring-down spectroscopy (CRDS) instrument

Picarro CRDS
- 0.05 ppm resolution
- 0.5 ppm drift over 1 month
- $30k/unit

NDIR sensor
- 0.15 ppm resolution
- 1.0 ppm over 3 months (TBD)
- $2k/unit (TBD)
Stability of off-resonance signal at 3.6 um

Off-resonance signal stability is 0.2 ppm of CO2 for hours

50 uV or 1 ppm
Scaling NDIR vertical axis to have it overlay on Picarro (using Picarro to calibrate the NDIR)

Short-term instability in the Picarro signal due to fluctuations in nitrogen gas purge

Deviation in NDIR due to system drift of ~2 ppm in 12 hours
NDIR sub ppm stability and resolution

Picarro, CO2 conc. ppm

NDIR

Time, hours

Picarro

NDIR
Constructing a dual-band system

4.26 μm 180 nm
3.06 μm 160 nm
Lessons learned

Signal of NDIR depends upon

1. Internal set temperatures (stabilize temperatures of both tube and detector assemblies)
2. Detector responsivity (use interference filters on sapphire substrates and protected pyroelectric detectors)
3. Source stability (use long-life, low-power lamps)
4. Source frequency (use a function generator as a source with sine-wave output)
5. Light-pipe stability of transmittance (use gold-coated Cu pipe or SS pipe)
6. Humidity (condition gas before analysis)
1. NDIR sensors can be improved with better pyroelectric detectors and an actively stabilized detector compartment

2. The improved designs can be competitive with CRDS over short periods (12 hours)

3. The improved design can measure CO2 with 0.2 ppm noise

4. We expect to achieve 1 ppm stability over 3 months with the dual-band detector and a thermally stable and structurally stable setup

5. Other gas species between 1 um to 14 um can be measured with lower uncertainties with the improved design