Combined Out-Of-Range and In-Band Stray Light Correction for Array Spectroradiometers

R. Zuber & M. Ribnitzky

Presented by J. Leland at CORM-CIE 2019, Ottowa, ON
Introduction

- Array-spectroradiometers are extensively used for the measurement of light (VIS and NIR)

- Fast measurement
- Flexible, robust
- Cost efficient
Introduction

- Double monochromator are the common used devices for precise measurements in the UV spectral region for e.g. photobiological safety measurements (IEC/DIN EN 62471:2006, CIE S 009)
The measurement of a source for the purpose of hazard classification requires accuracy during calibration and testing. The detector’s broad spectral response and high spectral resolution required to provide accurate weighting leads to stringent requirements for out-of-band stray light rejection.

The ratio of out-of-band energy to pass-band energy at 270 nm for tungsten or tungsten-halogen calibration lamps should be smaller than 10E-4. The double monochromator is the only instrument that provides the needed selectivity, and it is recommended for hazard measurements involving UV and visible radiation. It is recognized that monochromator systems introduce limitations in convenience and speed. Use of a single monochromator in the UV or visible spectrum should be used only if comparable results to that from a double monochromator can be obtained.
Double Monochromator \(<-\rightarrow\) Array-Spectrometer

- slow scanning, bulky devices, higher cost
Goal:

“Use the advantages of array spectroradiometers also in the UV range!”
Question:
“What is limiting the application of array-spectroradiometers in the UV?”
Answer: “Internal stray light”
- slow scanning, bulky devices, higher cost
+ stray light performance
The **internal stray light** is the limiting factor for array-spectroradiometer measurements in the UV spectral range
- Increases the **measurement uncertainty** significantly
- Stray light can be larger than the signal to be measured
Introduction

- The **internal stray light** is the limiting factor for array-spectroradiometer measurements in the UV spectral range
 - Increases the **measurement uncertainty** significantly
 - Stray light can be larger than the signal to be measured

- → **Possibility of incorrect classification**
 - higher risk group (IEC/DIN EN 62471:2006)
 - product rejection (sun beds)
Origin of stray light
Origin of stray light

Wavelength (nm)

UV

UVB | UVA

VIS & NIR
Origin of stray light

UV & VIS & NIR

UV
Correction of stray light

- Mathematical stray light correction
 - Characterization of the device with LSF (Line Spread Functions) over the full spectral range
 - Determination and application of correction matrix
 (Zong et al. 2006, Nevas et al. 2014)
Correction of stray light

- Mathematical stray light correction
 - Correction of 1 to 2 order of magnitude of In-Range stray light
Mathematical stray light correction
- Correction of 1 to 2 order of magnitude of In-Range stray light
- For pure UV spectroradiometers not effective. VIS and NIR spectral range cannot be characterized and corrected with a single device

Just this spectral range can be characterized
Mathematical stray light correction

- Correction of 1 to 2 order of magnitude of In-Range stray light
- For pure UV spectroradiometers not effective. VIS and NIR spectral range can not be characterized and corrected with a single device

Just this spectral range can be characterized

No bandpass filter from 200 nm to e.g. 400 nm available
Question:
“How to overcome this limitation?”
Further advanced approaches

- Use of two spectroradiometers with different spectral range (one full range of Si, one pure UV)
 - Nevas et al. 2014 from PTB

- Use multiple bandpass filters
 - Shaw et al. 2008 from NPL

- A lot of information is given in the now published document CIE 233
Question:

“Is there another possible approach for the UV range?”
Our approach

reduce stray light physically

and

correct remaining stray light mathematically
Our approach

- Stray light correction by optical filter
 - Out-of-Range stray light correction (highpass edgefilter)

- Mathematical stray light correction
 - In-Range stray light correction
Schematical setup of the BTS2048-UV-S

1) Incoming optical radiation
2) Cosine diffuser
3) **Filter wheel with optical filter**
4) BiTec spectral sensor
5) Electrical connectors
6) Microprocessor for data processing and communication.
Measurement results – Halogen lamp

- 250 W halogen lamp measurement at 500 mm distance

- Deviation E_{eff}
 - without SLC: 105%
 - combined SLC: 1.5%

- Detection limit
 - without SLC: 1E-3
 - combined SLC: 2E-5
Measurement results – Sunbed tanning lamp

- 4x 15 W sunbed tanning lamp measurement at 150 mm distance

<table>
<thead>
<tr>
<th>Deviation E_{eff}</th>
<th>Sunbed tanning lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>without SLC</td>
<td>74%</td>
</tr>
<tr>
<td>combined SLC</td>
<td>-2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detection limit</th>
<th>Sunbed tanning lamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>without SLC</td>
<td>2E-4</td>
</tr>
<tr>
<td>combined SLC</td>
<td>1E-5</td>
</tr>
</tbody>
</table>
Measurement results – LED

- 365nm LED measurement at 500 mm distance

<table>
<thead>
<tr>
<th></th>
<th>without SLC</th>
<th>combined SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation E_{eff}</td>
<td>7.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Detection limit</td>
<td>1E-4</td>
<td>1E-5</td>
</tr>
</tbody>
</table>

Diagram showing spectral irradiance in W/(m²nm) against wavelength in nm.
Measurement results – Xenon lamp

- 450 W Xenon lamp measurement at 180 mm distance

<table>
<thead>
<tr>
<th>Deviation E_{eff}</th>
<th>without SLC</th>
<th>combined SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.7%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detection limit</th>
<th>without SLC</th>
<th>combined SLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2E^{-2}$</td>
<td>$3E^{-5}$</td>
<td></td>
</tr>
</tbody>
</table>

- Spectral irradiance / W/(m²·nm)
- Wavelength / nm
<table>
<thead>
<tr>
<th>Deviation E_{eff}</th>
<th>Halogen lamp</th>
<th>Sunbed tanning lamp</th>
<th>Xenon lamp</th>
<th>365 nm LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>without SLC</td>
<td>105%</td>
<td>74%</td>
<td>6.7%</td>
<td>7.6%</td>
</tr>
<tr>
<td>combined SLC</td>
<td>1.5%</td>
<td>-2.5%</td>
<td>2.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Detection limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without SLC</td>
<td>1E-3</td>
<td>2E-4</td>
<td>2E-2</td>
<td>1E-4</td>
</tr>
<tr>
<td>combined SLC</td>
<td>2E-5</td>
<td>1E-5</td>
<td>3E-5</td>
<td>1E-5</td>
</tr>
</tbody>
</table>

E_{eff} of all tested lamps was measured with a deviation lower than 3% to a double monochromator reference.
B.1.1 Double monochromator: Recommended instrument

The measurement of a source for the purpose of hazard classification requires accuracy during calibration and testing. The detector’s broad spectral response and high spectral resolution required to provide accurate weighting leads to stringent requirements for out-of-band stray light rejection. …..

The ratio of out-of-band energy to pass-band energy at 270 nm for tungsten or tungsten-halogen calibration lamps should be smaller than 10E-4. The double monochromator is the only instrument that provides the needed selectivity, and it is recommended for hazard measurements involving UV and visible radiation. It is recognized that monochromator systems introduce limitations in convenience and speed. **Use of a single monochromator in the UV or visible spectrum should be used only if comparable results to that from a double monochromator can be obtained.** …..
→ E_{eff} of all tested lamps was measured with a deviation lower than 3% to a double monochromator reference

→ Measurement results suggest that UV hazard evaluations (ACGIH/ICNIRP) according to CIE S009/IEC 62471:2006 are possible with this approach
Summary

<table>
<thead>
<tr>
<th></th>
<th>Halogen lamp</th>
<th>Sunbed tanning lamp</th>
<th>Xenon lamp</th>
<th>365 nm LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation E_{eff}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without SLC</td>
<td>105%</td>
<td>74%</td>
<td>6.7%</td>
<td>7.6%</td>
</tr>
<tr>
<td>combined SLC</td>
<td>1.5%</td>
<td>-2.5%</td>
<td>2.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Detection limit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>without SLC</td>
<td>1E-3</td>
<td>2E-4</td>
<td>2E-2</td>
<td>1E-4</td>
</tr>
<tr>
<td>combined SLC</td>
<td>2E-5</td>
<td>1E-5</td>
<td>3E-5</td>
<td>1E-5</td>
</tr>
</tbody>
</table>

→ **Stray light corrected array spectroradiometer measurements down to 200 nm are possible for every type of light source**