Laboratory and Field Calibration Methods for Solar-induced Fluorescence Monitoring Systems

Julia K. Marrs, Taylor S. Jones, B. Carol Johnson, Stephen E. Maxwell, Lucy R. Hutyra, David W. Allen

BOSTON UNIVERSITY GEORGETOWN

November 7, 2023

Forested Optical Reference for Evaluating Sensor Technology (FOREST)

- Forested 1 hectare plot established on NIST Gaithersburg campus in summer 2017
- Carbon flux monitoring for comparison with optical remote sensing measurements
- FOREST reference site is more complicated than typical reference standards

Major Ecosystem Carbon Fluxes

Winbourne et al. 2022

FOREST Sensor Suite

Cameron Solar-Induced Fluorescence (SIF) System

- Remotely sensed chlorophyll fluorescence can track plant productivity
- Co-registered spectrometers, 3-channel optical camera, and thermal imager with programmable targeting

Lack of consensus on field-measured SIF signals Published mean SIF retrievals span three orders of magnitude

Laboratory Instrument Characterizations

Laboratory Instrumentation Characteristics

Spectrometer	Spectral Range	Spectral Resolution
Transfer Spectrometer 1	350.0 nm – 2500.0 nm	1.0 nm
Transfer Spectrometer 2	339.2 nm – 2502.2 nm	2.1 nm
SIF Spectrometer (NIST)	651.0 nm – 878.8 nm	0.22 nm
SIF Spectrometer (BU)	649.2 nm – 877.3 nm	0.22 nm

Transfer Radiometer

Channel	Center Wavelength	Bandwidth
1	411.8 nm	10.8 nm
2	441.0 nm	10.5 nm
3	548.4 nm	10.2 nm
4	661.4 nm	9.5 nm
5	775.5 nm	11.1 nm
6	870.0 nm	13.4 nm

Radiometric Responsivity Values

Responsivity Values Across Transfer Instruments

Agreement Across Transfer Instruments

Agreement Across Transfer Instruments

Detector Nonlinearity

An uncorrected 0.1 % nonlinearity over the saturation range of the detector can translate to an error of 3 % to 10 % in the SIF signal (Grossmann et al. 2018)

Conclusions

- Radiance responsivities for SIF-measuring instrumentation calculated using a calibrated sphere source and multiple transfer instruments agreed to within < 1 %
- This represents a significant improvement over existing calibration methods and will help to address crucial sources of uncertainty in SIF retrievals, which limit data intercomparison and ground validation of satellite data
- Differences in detector nonlinearity across instruments are still under study and highlight the need for calibration & characterization of all field instrumentation

Future Directions

- Assessment of laser line tuneable filter (LLTF) system for radiance calibrations is in progress
- Creation of field-portable
 LLTF system
- More linearity testing
- Wavelength calibration
- Stray light characterization

Acknowledgements

James Whetstone Greenhouse Gas Measurement Group Joseph Rice Thomas Larason

Questions?

