Study of Non-Uniformity Corrections in Luminous Flux Measurements of Automotive Headlamps using an Integrating Sphere through Simulations

LUIS PRADO, JR

RODRIGO C. F. DE LIMA

CARLOS E. ANDERSON

Photometry at Pradolux-Luxparts Group

Development and Manufacturing of automotive lights since 1976 in Brazil

2 Sites / ~ 500 employees / ~ 2000 products / IATF / ISO 9001 / **ISO 17025 (Photometry)**

Website: www.pradolux.com

Example of products:

Tail lights

Head lights

Markers

Equipment

Integrating Sphere, diameter = 1.5 m (*Everfine*)

Spectroradiometer HAAS-2000, 350-1000nm (*Everfine*)

Gonio-photometer type A (automotive) with class A (3%) photometer (*Everfine*)

1. The problem of spatial non-uniformity

Example of light - Sample #1 1.100 1.075 1.050 30° ^{20° 10° 0°} -10° -20° 1.025 -30° 40° 50° -50° 1.000 60° -60° 70° -70° 0.975 -80° 0.950 .90° 0.0 0.2 0.4 0.6 0.8 1.0 -150-100

80°

90°

Relative Luminous Flux – Sample #1

2. Simulations of the SRDF for our device[1]

- Build the model of the sphere (baffle, table, holders, detector, aux. lamp, etc.)
- Set all surfaces as Lambertian with a constant reflectivity ho
- Divide the sphere into 2,592 elements (5° step on θ and ϕ)
- Each element is illuminated by a lamp and the rays are traced with the reflections to the detector (with 180° and cosine angular responsivity)
- The detector response is recorded in a function $K = K(\theta, \phi)$
- The SRDF is normalized as

$$K^*(\theta,\phi) = \frac{4\pi K(\theta,\phi)}{\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} K(\theta,\phi) \sin\theta d\theta d\phi}$$

Modeling the sphere for ray-tracing

Ray-tracing engine – Raysect[2]

3. Analysis of the best reflectivity model

Simulated SRDF for different reflectivity values at $\theta = 90^{\circ}$

Flux correction due to the non-uniformity [1]

Sphere response factor

$$f_{s} = \frac{\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} K^{*}(\theta,\phi) I_{DUT}(\theta,\phi) sin\theta d\theta d\phi}{\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} I_{DUT}(\theta,\phi) sin\theta d\theta d\phi}$$

where, $I_{DUT}(\theta, \phi)$ is the Luminous Intensity of the Device Under Test (neglecting correction from the reference lamp)

Correction factor
$$k_s = \frac{1}{f_s}$$

5 Headlights with different LIDs

Measurement region

Optical axis parallel to the horizontal plane

Example of corrections for different reflectivity values

Accuracy of the corrected fluxes for different reflectivity values

Best model for SRDF, $\rho = 92,5\%$

4. Corrections

The correction in the flux model [3]

$$\Phi = \Phi_R \cdot \frac{y}{y_R} \cdot \frac{y_{AR}}{y_A} \cdot \left(\frac{U \cdot c_U}{U_0}\right)^{m_U} \cdot \left(\frac{J_R \cdot c_R}{J_0}\right)^{m_{J_R}} \cdot \frac{corS_R}{corS}$$

where:

Φ_R is the flux of the reference lamp

 $\frac{y}{y_R}$ is the factor of the signal of the test sample and the reference lamp

 $\frac{y_{AR}}{y_A}$ is the self-absorption correction

 $\left(\frac{U.c_U}{U_0}\right)^{m_U}$ is the correction of the measurement voltage of the test sample

 $\left(\frac{J_R.c_R}{J_0}\right)^{m_{J_R}}$ is the correction of the measurement current of the reference lamp

The correction in the flux model [3] (cont.)

$$\Phi = \Phi_R \cdot \frac{y}{y_R} \cdot \frac{y_{AR}}{y_A} \cdot \left(\frac{U \cdot c_U}{U_0}\right)^{m_U} \cdot \left(\frac{J_R \cdot c_R}{J_0}\right)^{m_J} \cdot \frac{corS_R}{corS}$$
where:

$$corS_R = (1 + \alpha_R \Delta T_{\alpha R} - \Delta s f_R - S_R - \gamma_R \Delta t_R)$$

$$corS = (1 + \alpha \Delta T_\alpha - \Delta s f - S - \gamma \Delta t)$$
where:

$$\alpha$$
 is the relative temperature coefficient,

$$3\%$$
 correction

wh

α

 ΔT_{α} is the difference in ambient temperature during the measurement,

 Δsf is the non-uniformity factor of the sphere: (k_s-1),

S is the factor of the influence of stray light,

 γ is the luminous flux decrease coefficient due to source aging,

 Δt is the total source usage time.

(Calibrated reference denoted with the subscript *R*)

		Relative	Relative
Symbol	Туре	u _{rel} (y)	u _{rel} (y)
		Headlamp	Isotropic
∆Ta	В	0,02%	0,02%
α	В	0,00%	0,00%
Δsf	В	-1,56%	-0,05%
S(θ)	В	-0,21%	-0,21%
γ	В	-0,69%	-0,69%
corS		1,71%	0,70%
$\Delta T_{\alpha R}$	A	0,02%	0,02%
α R	В	0,00%	0,00%
∆sfR	В	-0,05%	-0,05%
S _R (<i>θ</i>)	В	-0,20%	-0,20%
уr	В	-0,01%	-0,01%
corS _R		0,21%	0,21%
Φ_R	В	2,10%	2,10%
у	А	0,82%	0,82%
y _R	А	-0,02%	-0,02%
УА	А	-0,74%	-0,74%
YAR	А	0,02%	0,02%
U	А	0,09%	0,09%
CU	В	-0,11%	-0,11%
mυ	В	0,00%	0,00%
U _R	А	0,71%	0,71%
CR	В	0,34%	0,34%
m _{JR}	В	-0,07%	-0,07%
Φ		3,04%	2,61%
	k=2	6,08%	5,22%

$$\Phi = \Phi_R \cdot \frac{y}{y_R} \cdot \frac{y_{AR}}{y_A} \cdot \left(\frac{U \cdot c_U}{U_0}\right)^{m_U} \cdot \left(\frac{J_R \cdot c_R}{J_0}\right)^{m_{J_R}} \cdot \frac{corS_R}{corS}$$

$$Y = \Phi \left(\Phi_{R}, y, y_{R}, y_{AR}, y_{A}, U, c_{U}, m_{U}, J_{R}, c_{R}, m_{J_{R}}, \alpha_{R}, \Delta T_{\alpha R}, \Delta s f_{R}, S_{R}, \gamma_{R}, \Delta t_{R}, \alpha, \Delta T_{\alpha}, \Delta s f, S, \gamma, \Delta t \right)$$

GUM (Guide to the expression of uncertainty in measurement)[5]

$$u_{c}(y) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i})} \qquad N = 23$$
 Sample #3

5. Conclusions and outlook

- Errors in luminous flux measurements of headlights due to spatial non-uniformity in the integrating sphere are not small and must be corrected.
- ✓ The SRDF of our sphere was simulated with various details using the method described by Ohno et al [1].
- ✓ It was demonstrated, with measurements from 5 samples, that the model with 92.5% reflectivity provides the best correction.
- ✓ The model was used to correct the luminous flux of the samples, with the error bars for all samples containing the corrected flux.
- ✓ The uncertainty budget is affected by the present corrections, and it can be calculated (example of Sample #3).
- ✓ The model can be improved in future simulations by adding details of the hemisphere borders.
- ✓ In a subsequent study, experimental measurement of the SRDF can further advance the characterization of our equipment, as shown by Winter at al. [6].

References

[1] 1. Yoshi Ohno & Ronald O. Daubach (2001) Integrating Sphere Simulation on Spatial Non-uniformity Errors in Luminous Flux Measurement, Journal of the Illuminating EngineeringSociety, 30:1, 105-115, DOI: 10.1080/00994480.2001.10748339

[2] Dr Alex Meakins, Matthew Carr, Sorchard1, Jack Lovell, Vlad Neverov, Koyo MUNECHIKA, Matej Tomes, & Mathias von Essen. (2023). raysect/source: v0.8.1 Release (v0.8.1). Zenodo, DOI: https://doi.org/10.5281/zenodo.7633656

[3] Cameron Miller (2014) Preview: IES Guide on Measurement Uncertainty for Lighting Equipment Calibration, CORM 2014 Annual Meeting - May 22nd, 2014 Workshop: Practical Uncertainty Analysis for Lighting Measurements

[4] Bergman, R. et al. *CALiPER Exploratory Study: Accounting for Uncertainty in Lumen Measurements,* Pacific Northwest National Laboratory, Washington, 2011.

[5] JCGM 100:2008. Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM)

[6] S Winter *et al (2009)* Convenient integrating sphere scanner for accurate luminous flux measurements, *Metrologia* 46 S248, DOI: 10.1088/0026-1394/46/4/S22

Thank you!

Questions?

