

Hemispherical-directional Integrating Sphere for

High Temperature Reflectance Factor Measurement

Leonard Hanssen, Alexander Prokhorov, and Boris Wilthan

Optical Technology Division NIST Gaithersburg, MD 20899 hanssen@nist.gov

- I. Application: Non-Contact Method for Sample Temperature
- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- **VI.** Conclusions

I. Application: Non-Contact Method for Sample Temperature

- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- **VI.** Conclusions

New Capability: Infrared Spectral Emittance

- Compare radiances of samples and reference blackbody source
- Need to know sample and blackbody temperatures
- Sample temperature can be dominant component of uncertainty

$$\varepsilon(\lambda,T) = \frac{V(\lambda,T)}{V_{BB}(\lambda,T_{BB})} \left(e^{\frac{c_2}{\lambda \cdot T}} - 1\right) / \left(e^{\frac{c_2}{\lambda \cdot T_{BB}}} - 1\right)$$

Sample Temperature Measurement

- Sample temperature required for spectral emittance determination
- Our primary method for sample T $\ge 200^{\circ}$ C is non-contact
 - Secondary method of embedded thermocouple for backup/validation
- Method first developed at INRIM (IMGC) Italy:
 - M. Batuello, F. Lanza, and T. Ricolfi, "A simple apparatus for measuring the normal spectral emissivity in the temperature range 600 1000°C", Proc. 2nd Intl. Symp. Temp. Meas. Ind. Sci. (IMEKO TC12), Suhl (GDR), 1984, pp 125-130.
- Uses Near-IR integrating sphere, filter radiometers & reference blackbodies
- Primary advantage: obtain temperature of sample surface area of interest in direct fashion

IR Emittance Measurement System

NIST Physics Laboratory

OPTICAL TECHNOLOGY DIVISION

HIGH TEMPERATURE EMITTANCE REALIZATION STEPS

May 7, 2008

- I. Application: Non-Contact Method for Sample Temperature
- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

"Diffuse" Reflectance

Directional-Hemipsherical Reflectance DHR Hemispherical-Directional Reflectance Factor HDRF

- Single direction illumination
- Hemispherical collection
- = output flux/input flux
- Requires uniform collection

- Hemispherical illumination
- Directional collection (small solid angle)
- = output flux/flux from ideal diffuser output flux/(input flux*proj. solid angle)
- Requires uniform radiance illumination

(DHR) Sphere Design for Relative Reflectance Measurements: How to Handle First Reflection from Sample?

- Design philosophy: treat light reflected from sample and reference in identical fashion
- Effect: Sample scatters light (BRDF) in arbitrary fashion different from reference
- Problem: Detectors often have limited field-of-view (FOV) and stronger response for light within FOV
- Solution: Use baffles to control light interchange between sample/reference and ports/detector field-ofview (FOV)
- Goal: To make throughput to the detector independent of the sample BRDF

Isotropic Sphere Design Concept*

- Design must treat sample and reference reflected light equally for accurate relative measurements and be independent of scattering distribution (BRDF)
- Conclusion: best designs "force" sample and reference η to be the same
 - Where η is the fraction of reflected light going into the FOV.
 - Three possibilities, $\eta = 0$, ($\eta = 1/2$), and $\eta = 1$

*K. A. Snail and L. M. Hanssen, "Integrating sphere designs with isotropic throughput", Applied Optics **28** no. 10, 1793 (1989).

CORM Council for Optical Radiation Measurements

Isotropic Sphere Designs

12

- I. Application: Non-Contact Method for Sample Temperature
- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

Modeling of HDRF Integrating Sphere Using Monte Carlo Methods*

- Monte Carlo Modeling Software Description:
 - Employs backward ray-tracing, importance sampling, other methods for high speed calculations 10⁷ rays / run
 - Sample & reference have specular/diffuse or real BRDF
 - Source has $\cos^{n}(\theta)$ form
 - Sphere wall & other ports have specular/diffuse (current version)
- Output Products:
 - Hemispherical distributions of spectral radiance falling onto sample center
 - Measured spectral reflectance for samples w/ specular-diffuse & real BRDF
 - Integrating sphere throughput

*A. V. Prokhorov, S. N. Mekhontsev and L. M. Hanssen, "Monte Carlo modeling of an integrating sphere reflectometer", Applied Optics **42** no. 19, 2382 (2003).

Geometric Parameters of Modeled System

Dimension	Size
Sphere radius	127 mm
Elliptic opening major axes	$60 \times 46 \text{ mm}$
Source radius	5 mm
Sample and reference radii	9.5 mm
Sample and reference holders radii	17.5 mm
Distance between baffles	30 mm
Baffles height	3 mm
Baffles length	11 mm
Central angle between sample and reference	32°
Viewing angle	10°

HDR Baffling Design Options Modeled

- Goals for evaluation:
 - Best in radiance uniformity
 - Least sensitive to scattering properties of sample

Т

OPTICAL TECHNOLOGY DIVISION Comparison of Design's Radiance UniformityLarge Baffle No Baffle

Small Baffle

Recessed Source

CORM Council for Optical Radiation Measurements

17

Effects of Design on Measured Reflectance for a Specular Sample Compared to a Diffuse Reference

CORM Council for Optical Radiation Measurements

- I. Application: Non-Contact Method for Sample Temperature
- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- **VI.** Conclusions

NIST Physics Laboratory

OPTICAL TECHNOLOGY DIVISION

Sample Emittance/Temperature Measurement Setup

DHR Integrating Sphere: Rear View w/ uncoated Insert

- Sintered PTFE on Main Body
- BaSO₄ on insert (future alumina?)
- 250 mm diameter
- Separate insert containing sample, reference and source ports and baffles
- Insert water cooled to accommodate samples up to 1400 K
- Source between sample and reference; minimal size baffles for near 2 π illumination of sphere
- Sample, ref. ports accommodate 9° & normal incidence
- Sample, ref. ports accommodate sample & heater assembly

CORM Council for Optical Radiation Measurements

Integrating Sphere for Sample Temperature Measurement

View through Exit Port

OPTICAL TECHNOLOGY DIVISION

Sample Heater & Sphere

May 7, 2008

Reflectometer Evaluation using Standard Samples*

Wavelength/ nm	Mirrors Ratio	Diff. %	Specular/ Diffuse	Calibration data	Diff. %	SiC vs. gold	Calibration data	Diff. %
905	1.0004	0.04	1.0102	1.0100	0.02	0.1929	0.1930	-0.05
1550	1.0007	0.07	1.0165	1.0220	-0.55	0.1934	0.1937	-0.16

- Diffuse sample measurement has greater uncertainty (than specular) due to non-uniformity of sphere
- Expanded uncertainty (k = 2) for calibrated standards ~0.1% 0.5%
- Sphere performance meets design goal

*L. M. Hanssen, C. P. Cagran, A. V. Prokhorov, S. N. Mekhontsev, and V. B. Khromchenko, "Use of a High-Temperature Integrating Sphere Reflectometer for Surface-Temperature Measurements", Int. J. Thermophysics **28** no. 2, 566 (2007).

Emittance Results from Sphere Reflectometer

Emittance Uncertainty Budget

Uncertainty budget of sample spectral emittance			
		Pt-10Rh at	
Reflectometer at 905 nm	Туре	600¹ ⁄C	SiC at 600 ¹ /C
Repeatability of temperature comparison	А	0.05%	0.05%
Sample reflectance			
Repeatability of reflectance comparison	А	0.03%	0.03%
Sample			
Alignment	В	0.19%	0.19%
Temperature	В	0.05%	0.00%
Reflectance reference			
Calibration	В	0.09%	0.09%
Alignment	В	0.19%	0.19%
Sphere reflectometer	В	0.20%	0.20%
Radiometer calibration			
Calibration at FP	В	0.01%	0.01%
Interpolation	В	0.01%	0.01%
Alignment	В	0.00%	0.00%
SSE of interface optics	В	0.04%	0.04%
Combined standard uncertainty of spectral			
emittance		0.36%	0.35%
Expanded uncertainty (k = 2)		0.72%	0.70%

- I. Application: Non-Contact Method for Sample Temperature
- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

Sample Surface Temperature Uncertainties (using sphere-based method; k=2)

$d\varepsilon(\lambda)$	$-\frac{c_2}{2}$.	$dT(\lambda)$
$\mathcal{E}(\lambda)$	$-\frac{1}{\lambda}$	$T(\lambda)^2$

Si	С	Pt-1	0Rh
T [K]	ΔT [K]	T [K]	ΔT [K]
573.75	0.14	573.59	0.15
868.56	0.34	872.76	0.34
1038.81	0.49	1172.75	0.61
1123.61	0.57		

• Using emittance uncertainties from previous table

Temperature Method Comparison/Validation: Non-Contact (Sphere) vs. Contact (TC)

Material	T_{TC} [K]	E _{tot}	T _{w/o conv.} [K]	T _{w/ conv.} [K]	T _{radio} [K]	ΔT _(radio-conv) [K]
	298.00	0.800	298.00	298.00		
	573.75	0.800	573.71	573.67	573.38	-0.29
SiC	868.56	0.800	868.34	868.25	867.94	-0.32
	1038.81	0.800	1038.36	1038.25	1038.04	-0.21
	1123.61	0.800	1122.99	1122.87	1122.07	-0.80
Dt	573.59	0.096	573.58	573.51	572.96	-0.54
Г l- 100/ Dh	872.76	0.129	872.69	872.54	871.83	-0.71
10 70 KII	1172.75	0.172	1172.45	1171.21	1171.75	-0.47

- Last column show agreement level of two methods
- Table shows effect of convection loss correction
- Agreement is very good; better than anticipated from uncertainty budgeting

IR Spectral Emittance Example: Oxidized Inconel

- I. Application: Non-Contact Method for Sample Temperature
- **II. Hemispherical-directional Reflectance Factor Sphere Design**
- **III.** Monte Carlo Modeling and Optimization of Sphere Design
- **IV. Constructed Sphere & HDRF Performance Results**
- V. Application Measurement Results: Emittance & Temperature
- VI. Conclusions

Summary & Conclusions

- We have designed, modeled, constructed, tested and applied an HDRF integrating sphere
- The integrating sphere reflectance performance was validated with calibrated samples.
- The implementation of a sphere-based non-contact temperature measurement method was validated by comparison with contact thermometry.
- The sphere-based method:
 - useful for both specular & diffuse materials
 - advantage for elevated temperatures and poorly conducting materials
 - limited at short wavelengths/lower temperatures due to low sample emission
 - can be adapted to transparent materials

May 7, 2008