
sense and simplicity

SSL/LED Road to Standardization 2010

Andrew D. Jackson
Philips Lighting Corporate Regulatory and Certification Laboratory
CORM Annual Conference, May 9-11 Las Vegas

Solid State Lighting – The Road to Standardization

- Presentation Scope
- Why Standardize?
- What are the benefits?
- Types of standards
- Who is working on SSL standards?
- SSL Standards Roadmap
- SSL Standards
- Accreditation, MRA/MLA, and global data acceptance

Solid State Lighting – The Road to Standardization

- Presentation Scope
 - Standards for Drivers, LED, LED Array, LED Module, LED Light Engines, LED Lamps, Solid State Luminaires used in general illumination
 - Communication
 - Measurement
 - Performance
 - Safety
 - Electromagnetic Compatibility
 - Technology Development
 - Standards that are complete and standards that are in development
 - Not an exhaustive list of all international SSL standards
 - US and major international SSL standards development

Solid State Lighting – The Road to Standardization – Why Standardize?

- What is a standard?
 - No more than a specification
 - May specify how a product claims to conform
 - May define common dimensions
 - May define interconnections
 - May define how a product is tested
- Why Standardize?
 - Enable products to work interchangeably/together
 - Provide assurance that a product meets performance levels
 - Provide the means for designers, manufacturers and users to communicate – terminology/common language
 - Provide strict methods for measurement allowing comparison

Solid State Lighting – The Road to Standardization – What are the benefits?

- Manufacturers:
 - Provide uniform methods for testing and rating products
 - Help to assure system integrity and safety for the application
 - Reduce liability
 - Encourage new product development
 - Help avoid confusion in communicating with customers
 - To enable products to work interchangeably or together
 - Rapid growth and adoption of SSL Technology
 - Modular approach economics
 - Rapid fixture and luminaire innovation
 - Innovative product platform designs

Solid State Lighting – The Road to Standardization – What are the benefits?

• Users:

- Help educate users of LED lighting technology
 - Product performance and how it is measured, allowing comparison
- Provides a common language for communication
- Drive novel and creative applications of lighting
- Provides embedded options for lighting through replacement with color and other dimensions of lighting
- Provide repair/replacement components economics
- Choice!
- Government
 - Needed for incentive programs Energy Star
 - Needed for Energy Efficiency requirements

Solid State Lighting – The Road to Standardization – Types of Standards

- Communication Standards
 - Define the basic terms, symbols and other communication tools
- Measurement Standards
 - Define testing protocols to allow direct comparisons of product characteristics
- Performance standards
 - Provide methods for uniformly determining product performance and for rating products.
- Safety Standards
 - Define electrical, mechanical, thermal, optical radiation, or other safety considerations

Solid State Lighting – The Road to Standardization – Types of Standards

- Electromagnetic Compatibility
 - Determination of unintentional generation, propagation and reception of electromagnetic energy
- Technology Development
 - Documents that contain best practices and that outline standards needs for advancement of SSL technology
- Design standards
 - Establish dimensions, tolerances or other physical characteristics of products. Enable interfacing and interchangeability.

Solid State Lighting – The Road to Standardization – Who is involved?

rganizations Supporting SSL Standards										
Communication	Measurement	Performance	Safety	EMC	Technology Development					
CIE (SDO)			ASSIST							
IESNA (SDO)			US DOE/PNNL (CALIPER)							
			UL (SDO)		NEMA					
					NGLIA					
					NIST					

Solid State Lighting – General Illumination – Standards Roadmap and Development Activities									
	Drivers	LED	LED Package, LED Array, LED Module, LED Light Engine	LED Lamp, Integrated	LED Lamp, non-Integrated	LED Luminaire (AKA SSL)	Manufacturing		
Communication	•ANSI/IESNA RP-16 •IEC/TS 62504	•ANSI/IESNA RP-16 •IEC/TS 62504 •IEC 60050-845 •IEC PAS025A (nano-grid) •ANSI C78.XX (Standard LED data sheet)	•ANSI/IESNA RP-16 •IEC/TS 62504 •IEC 60050-845	•ANSI/IESNA RP-16 •IEC 61231 •IEC/TS 62504 •NEMA/ALA LSD-51 •IEC 60050-845	•IEC 61231 •IEC/TS 62504 •NEMA/ALA LSD-51	•ANSI/IESNA RP-16 •IEC 61231 •IEC/TS 62504 •NEMA/ALA LSD-51 •IEC 60050-845	•ANSI/IESNA RP-16 •IEC 61231 •IEC/TS 62504		
Measurement	ANSI C82.XX (LED Driver Testing Method)	• CIE 127 • CIE TC 2-63 • IES TM-21 • IES LM-80 • IESNA LM-xx • IESNA LM-xx2 • IES proposal (OLED Measurement)	Light Engines and integrated	•CIE TC 1-69 •IEC/TR 61341	CIE 13.3 CIE TC 1-69 IEC/TR 61341	•CIE 13.3 •CIE TC 1-69 •IEC/TR 6134 •IES LM-79 •IES proposal (LM-80 luminaire level)	•CIE TC 2-64		
Performance	•IEC 62384 •ANSI C82-SSL1-200X	NEMA SSL-3	Standard)	•ANSI_C78.377 (color) •PAS ANSI C78-377 •IEC/PAS 62612 (Self-ballasted LED-lamps) •IEC62663-2	•ANSI_C78.377	•ANSI_C78.377 •PAS ANSI C78-377 •IEC 62XX (Performance standard for LED-Luminaires) •IEC 62xxx			
Safety	•IFFE Project P1789		•UL 8750	• IEC 62471/CIE S 009	•ANSI/IESNA RF-27.1 •ANSI/IESNA RP-27.2 •ANSI/IESNA RP-27.3 •IEC 62471/CIE S 009	•ANSI/IESNA RP-27.1 •ANSI/IESNA RP-27.2 •ANSI/IESNA RP-27.3 •IEC 62471/CIE S 009 •IEEE Project P1789 •UL 8750	•IEC TR 62471-2		
Electromagnetic Compatibility	•ANSI C82-SSL1-200X •ANSI C82.77 •CISPR 15 •IEC 61547 •IEC 61000-3-2 (EMC)			•ANSI C82.77 •CISPR 15 •IEC 61547 •IEC 61000-3-2 (EMC)		•ANSI C82.77 •CISPR 15 •IEC 61547 •IEC 61000-3-2 (EMC)			
Technology Development	•IEC 62386-207 •NEMA LSD-49 •NEMA SSL-1	ANSI SR (Thermal Characterization of SSL Interconnects)	•IEC 60838-2-2 (connectors) •NEMA SSL-4 (form factors) •NEMA LSD44 (interconnects) •NEMA LSD45 (interconnects) •Zhaga	•NEMA LSD-49 (dimming) •NEMA SSL-6 (dimming)	•	•NEMA LSD 44 •NEMA LSD 45 •IEC 62386-207			

Solid State Lighting – The Road to Standardization

Communication

- ANSI/IESNA RP-16 Nomenclature and Definitions for Illuminating Engineering
 - Includes LED and SSL terms
- IEC/TS 62504 Ed. 1.0: Terms and definitions for LEDs and LED modules in general lighting
- IEC 60050-845 (CIE 17.4): International Electrotechnical Vocabulary: Lighting.
- IEC 61231: International lamp coding system (ILCOS)
- IEC PAS025A Publicly Available Specification—standardized white binning nomenclature; the so called "nano-grid."
- NEMA/ALA LSD-51 Solid State Lighting—Definitions for Functional and Decorative Applications

Solid State Lighting – The Road to Standardization

- Measurement
 - ANSI C82.XX: LED Driver Testing Method
 - CIE 127:2007: Measurement of LEDs
 - CIE 13.3-1995: Method of measuring and specifying colour rendering of light sources New edition
 - CIE TC 1-69: Colour Rendering of White Light Sources
 - CIE TC 2-50: Measurement of the Optical Properties of LED Clusters and Arrays
 - CIE TC 2-63: Optical Measurement of High-Power LEDs
 - CIE TC 2-64: High Speed Testing Methods for LEDs
 - IEC 61341: Method of measurement of centre beam intensity and beam angle(s) of reflector lamps
 - IES TM-21: Lumen Depreciation Lifetime Estimation Method for LED Light Sources
 - Standards in blue are currently in development

Solid State Lighting – The Road to Standardization

- Measurement

- IES LM-79-08: Approved Method: Electrical and Photometric Measurements of Solid-State Lighting Products
- IES LM-80-08: Approved Method for Measuring Maintenance of LED Light Sources (under revision).
- IESNA LM-xx: Approved Method for Electrical and Photometric Measurement of DC High Power LEDs and Arrays
- IESNA LM-xx2: Approved Method for Electrical and Photometric Measurement of AC High Power LEDs and Arrays
- IES LM-XX-201X: Approved Method for the Characterization of LED Light Engines and Integrated LED Lamps for Electrical and Photometric Properties as a Function of Temperature
- IES (proposal): Measurement of OLEDS
- IES (proposal): LM-80 luminaire level
 Standards in blue are currently in development

Solid State Lighting – The Road to Standardization – Performance

- ANSI C82-SSL1-200X: Driver Performance Standard
- ANSI_NEMA_ANSLG C78.377-2008: American National Standard for Electric Lamps—Specifications for the Chromaticity of Solid State Lighting Products (under revision).
- IEC 62384: D.C. or A.C. supplied electronic control gear for LED modules - Performance requirements
- IEC 62XXX: Performance Standard for LED Modules & Performance Standard for LED-Luminaires
- IEC PAS ANSI C78-377: Publicly Available Specification of the existing ANSI_ANSLG C78.377 standard. Includes a translation table that expresses the specification in terms of LED grid coordinates.

Solid State Lighting – The Road to Standardization

Performance

- IEC/PAS 62612 ed 1.0: Self-ballasted LED-lamps for general lighting services - Performance requirements
- IEC62663-2: Performance standard for self-ballasted LED lamps by voltage <50 V
- NEMA SSL-3: High Power LED Binning for General Illumination

Solid State Lighting – The Road to Standardization – Safety

- ANSI/IESNA RP-27.1-05: Photobiological Safety for Lamps and Lamp Systems-General Requirements
- ANSI/IESNA RP-27.2-00: Photobiological Safety for Lamps and Lamp Systems - Measurement Systems
- ANSI/IESNA RP-27.3-96: Photobiological Safety for Lamps Risk Group Classification and Labeling
- ANSI/UL 1012: Power Units Other Than Class 2
- ANSI/UL 1310: Standard for Class 2 Power Units
- UL 1993: the Standard for Safety of Self-Ballasted Lamps and Lamp Adapters (supplement to include devices using LEDs)
- CIE TC 2-58: Measurement of LED Radiance and Luminance
- CIE TC 6-55: Photobiological Safety of LEDs

Solid State Lighting – The Road to Standardization – Safety

- IEC 61347-2-13:2006: Lamp controlgear Part 2-13: Particular requirements for d.c. or a.c. supplied electronic controlgear for LED modules
- IEC 62031: LED modules for general lighting safety requirements
- IEC 62471 Ed. 1.0 b:2006/CIE S 009 (CIE S 009:2002): Photobiological safety of lamps and lamp systems
- IEC/TR 62471-2 Ed. 1.0: Photobiological safety of lamps and lamp systems - Part 2: Guidance on manufacturing requirements relating to non-laser optical radiation safety
- IEC 62560 Ed1: Self-ballasted LED-lamps for general lighting services
 > 50 V Safety specifications

Solid State Lighting – The Road to Standardization – Safety

- IEC 62663-1 Ed. 1.0: Non-ballasted single capped LED lamps for general lighting - Part 1: Safety requirements
- IEEE Project P1789: Recommended Practices of Modulating Current in High Brightness LEDs for Mitigating Health Risks to Viewers
- UL 8750: Outline of Investigation for Light Emitting Diode (LED) Light Sources for use in Lighting Products

Solid State Lighting – The Road to Standardization – EMC

- ANSI C82.77-2002: Harmonic Emission Limits Related Power Quality Requirements for Lighting (Under review to include SSL)
- CISPR 15: Limits and Methods of Measurement of Radio Disturbance Characteristics of Electrical Lighting and Similar Equipment.
- IEC 61000-3-2: Electromagnetic compatibility (EMC) Part 3-2: Limits -Limits for harmonic current emissions (equipment input current ≤ 16 A per phase)
- IEC 61547-1995: Equipment for General Lighting Purposes EMC Immunity Requirements

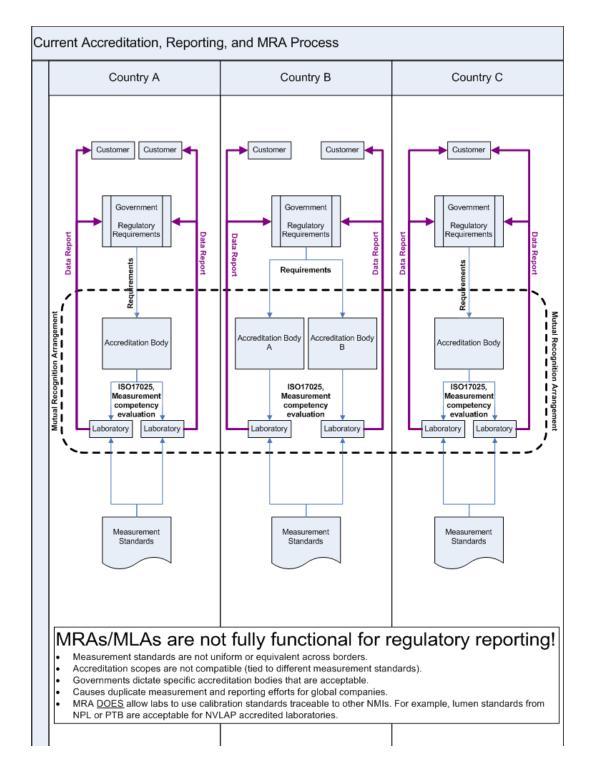
Solid State Lighting – The Road to Standardization – Technology Development

- ANSI 78.XX: Standard LED data sheet
- ANSI SR-XX: Thermal Characterization of SSL Interconnects
- ANSI C78.XX: ANSI Standard LED Footprint
- IEC 60838-2-2:2006: Miscellaneous lampholders Part 2-2: Particular requirements – Connectors for LED-modules
- IEC 62386-207 Ed.1: Digital addressable lighting interface Part 207: Particular requirements for control gears; led modules (device type 6)
- NEMA LSD 44: Solid State Lighting—The Need for a New Generation of Sockets & Interconnects
- NEMA LSD 45: Recommendations for Solid State Lighting Sub-Assembly Interfaces for Luminaires
- NEMA LSD-49: SSL Dimming Recommended Practices Standards in blue are currently in development

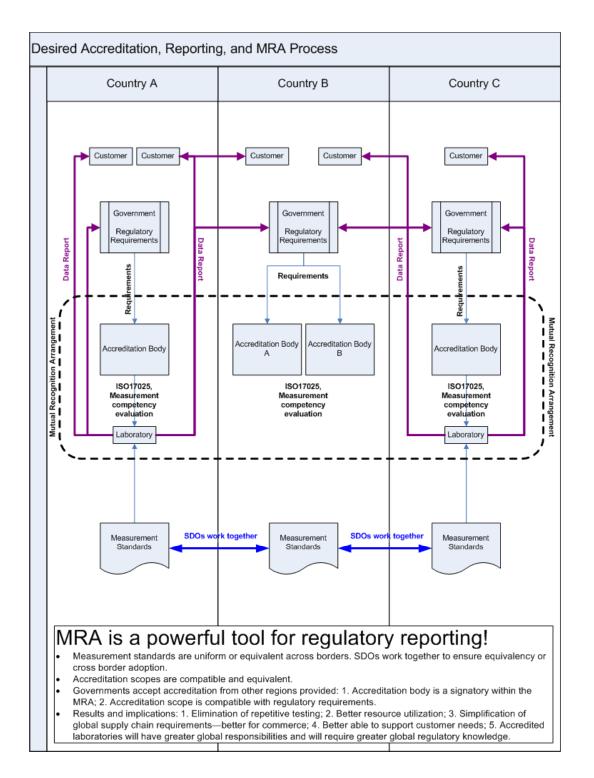
Solid State Lighting – The Road to Standardization – Technology Development

- NEMA SSL 1-200X: Electric Drivers for LED Devices, Arrays, or Systems
- NEMA SSL-4: Form Factors
- Zhaga
 - an industry-wide cooperation aimed at the development of standard specifications for the interfaces of LED light engines.
 - LED light engine is an LED module with defined interfaces that do not depend on the type of LED technology used inside the light engine.

Accreditation, MRA/MLAs and the Global Market


Accreditation:

- formal recognition by an authoritative body
- covers the capability and competence of the laboratory
- lab provides scientifically sound and valid calibration and/or testing services.


MRA/MLA:

- Mutual Recognition Arrangements/Multilateral Recognition Arrangements
- signatories accept that the accreditations granted by other signatory accreditation bodies
- signatories promote the acceptance of calibration and/or test results across accreditation bodies.

Solid State Lighting – The Road to Standardization – Future Work

- Completion of "in progress" standards
 - A lot of work!
- SSL Interconnects
 - Thermal interface measurement standards
 - Performance standards
 - Interconnect standards covering all Mechanical, Electrical, and thermal aspects.
 - "base and holder" like standards
- Flicker
 - Important to consider, especially with AC driven LED systems
 - Remember magnetically ballasted fluorescent lamps
- MRA/MLA make it useful!

Solid State Lighting – The Road to Standardization – Conclusions

- SSL standards will drive:
 - Consumer confidence
 - Uniform methods for testing and rating products
 - Direct comparison of product/component performance
 - Technology advancements
 - A common language for communication
 - Market advancement
 - Faster adoption of new technology
 - Governmental program and energy efficiency legislation
 - Reduction in liability risk
 - Possibility of standard interconnects
 - · Replacement and choice!

Solid State Lighting – The Road to Standardization

- Further Information
- CIE: http://www.cie.co.at/index ie.html
- IEC: http://www.iec.ch/
- IEEE: http://grouper.ieee.org/groups/1789/
- ANSI: http://www.ansi.org/
- ASSIST: http://www.lrc.rpi.edu/programs/solidstate/assist/index.asp
- NEMA: http://www.nema.org/
- NGLIA: http://www.nglia.org/
- NIST: http://www.nist.gov/index.html
- UL: http://www.ul.com/global/eng/pages/
- US DOE: http://www1.eere.energy.gov/buildings/ssl/
 - CALiPER Program:
 - http://www1.eere.energy.gov/buildings/ssl/caliper.html
 - PNNL: http://www.pnl.gov/

