CCPR K3 Key Comparison of Luminous Intensity

Arnold Gaertner
NRC Metrology

CORM 2019 Annual Technical Conference
2019-October-28
Intensity

Radiant Intensity

\[I_e(\lambda) = \frac{\Phi_e(\lambda)}{\Omega} = \frac{\text{radiant flux}}{\text{solid angle}} \]

unit = watt per steradian
Luminous Intensity

\[I_v = \frac{\Phi_v}{\Omega} = \frac{\text{luminous flux}}{\text{solid angle}} \]

unit = candela = lumen per steradian

\[\Phi_v = K_{cd} \int_{360 \, \text{nm}}^{830 \, \text{nm}} V(\lambda) \cdot \Phi_e (\lambda) \cdot d\lambda \]

unit = lumen

\[K_{cd} = 683 \frac{\text{lumen}}{\text{watt}} \]
Intensity

Luminous Intensity, SI unit candela

\[I_v = \frac{\Phi_v}{\Omega} \quad \text{unit} = \text{lumen per steradian} = \text{candela} \]

CGPM definition:

The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency \(540 \times 10^{12}\) Hz, \(K_{\text{cd}}\), to be 683 when expressed in the unit \(\text{lm} W^{-1}\), which is equal to \(\text{cd sr} W^{-1}\), or \(\text{cd sr} \text{ kg}^{-1} \text{ m}^{-2} \text{ s}^3\), where the kilogram, metre and second are defined in terms of \(h, c\) and \(\Delta\nu_{\text{Cs}}\).

https://www.bipm.org/en/measurement-units/base-units.html
CCPR KEY COMPARISON CCPR-K3.2014
Comparison Organisation

• Selection of participants, artifacts and protocol

Comparison Procedures

• Comparison measurements and measurement verification
• Data analysis and comparison of participant SI candela realisations
• Write the report
CCPR Key Comparison CCPR-K3.2014

Comparison Organisation
- Selection of NRC as pilot
- Selection of participants (12 max)
- Task Group
 - Selection of artifact
 - Lamp vs photometer: standards-quality incandescent lamps
 - Type of lamp: Incandescent (Osram Wi41/G and NPL/Polaron heavy current)
 - Type of comparison (star type: participant – pilot – participant)
 - Standard lamps are fragile and expensive
 - Draft the technical protocol (artifact transportation, measurement reporting, uncertainties, etc.)
- Register the comparison: CCPR-K3.2014

<table>
<thead>
<tr>
<th>RMO Group</th>
<th>RMO Group Members</th>
<th>Maximum Number of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>EURAMET+COOMET</td>
<td>6</td>
</tr>
<tr>
<td>Group 2</td>
<td>APMP+AFRIMETS</td>
<td>4</td>
</tr>
<tr>
<td>Group 3</td>
<td>SIM</td>
<td>2</td>
</tr>
</tbody>
</table>
CCPR Key Comparison CCPR-K3.2014

Comparison Organisation

- **Selection of participants**

<table>
<thead>
<tr>
<th>NMI</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMISA</td>
<td>South Africa</td>
</tr>
<tr>
<td>NIM</td>
<td>China</td>
</tr>
<tr>
<td>NMIA</td>
<td>Australia</td>
</tr>
<tr>
<td>NMIJ</td>
<td>Japan</td>
</tr>
<tr>
<td>IO-CSIC</td>
<td>Spain</td>
</tr>
<tr>
<td>LNE-CNAM</td>
<td>France</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NMI</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>METAS</td>
<td>Switzerland</td>
</tr>
<tr>
<td>NPL</td>
<td>UK</td>
</tr>
<tr>
<td>PTB</td>
<td>Germany</td>
</tr>
<tr>
<td>VNIIOFI</td>
<td>Russia</td>
</tr>
<tr>
<td>NIST</td>
<td>USA</td>
</tr>
<tr>
<td>NRC</td>
<td>Canada</td>
</tr>
</tbody>
</table>
Comparison Artifact

- Type of lamp: Incandescent (Osram Wi41/G and NPL/Polaron heavy current)
Comparison Procedures • Measurements

• Comparison measurements
 • Each participant supplied their own calibrated (~6) lamps (ship or hand-carry)
 • NRC received and measured ~70 comparison lamps
 • Each participant re-measured their lamps

• Measurement verification and artifact certification
 • Each participant compares before and after shipment measurements
 • NRC provides relative data for all the artifacts of each participant
 • Removal of unstable artifacts => final comparison artifacts
Comparison Procedures • Data Analysis
Comparison Procedures • Analysis

• Data analysis
 • Determine final NRC measurement value for each artifact
 • Determine final NRC measurement value for each participant

• Comparison of participant SI candela realisations
 • KCRV (Key Comparison Reference Value)
 • Weighted mean with cut-off
 • Identification of ‘outliers’: deviation from KCRV greater than 6 times their uncertainty
 • Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$

• All this requires an uncertainty analysis (NRC and Participant measurements)
Comparison Procedures ● Measurements at pilot (NRC)

- Comparison of all artifacts under identical measurement configuration
Comparison Procedures • Measurements at pilot (NRC)

- Comparison of all artifacts under identical measurement configuration

\[
R_{i,j,m} = \frac{I_{V(i,j)}}{V_{i,j,m}} \left(\frac{\text{cd}}{\text{volt}} \right)
\]

\[
I_{V(i,j)} \text{ (cd)}
\]

\[
V_{i,j,m} \text{ (volt)}
\]
Comparison Procedures • Measurements at pilot (NRC)

- Comparison of all artifacts under identical measurement configuration
- $d \sim 3.2 \, m$
- 3 photometers
- ≥ 2 measurements/lamp
- ~ 250 measurements
- ~ 2 months
Comparison Procedures • Measurements at pilot (NRC)

- **How accurate is the comparison?**

- **Sources of Uncertainty •** \(u(V_{i,j,m}) \) • (~15!)
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Participant Lamps
 - Electrical (4)
 - Optical (3)
 - Photometric (1)

Consider:

- In 3D space there are 6 variables: 3 spatial and 3 angular
- Lamp output: % change \(\approx 7 \) times % change in lamp current
 - Am I operating the lamp electricals to the same standards as the participant?
- How/with what do I ensure stability over 2 months of measurements?
CCPR Key Comparison CCPR-K3.2014

Comparison Procedures • Measurements at pilot (NRC)

• Sources of Uncertainty • $u(V_{i,j,m})$
 • NRC Optical Coordinate System (2)
 • Starting line is X-axis (laser beam)
 • Alignment of Y-axis to X-axis (laser)
 • Alignment of Z-axis to XY axes
CCPR Key Comparison CCPR-K3.2014

Comparison Procedures • Measurements at pilot (NRC)

• Sources of Uncertainty • \(u(V_{i,j,m}) \)
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Spectral Mismatch Error
 \[
 F^* = \frac{\int_{360\text{ nm}}^{830\text{ nm}} P_e^T(\lambda) \cdot V(\lambda) \cdot d\lambda}{\int_{all\ wavelengths} P_e^T(\lambda) \cdot R(\lambda) \cdot d\lambda} \cdot \frac{\int_{all\ wavelengths} P_e^S(\lambda) \cdot R(\lambda) \cdot d\lambda}{\int_{360\text{ nm}}^{830\text{ nm}} P_e^S(\lambda) \cdot V(\lambda) \cdot d\lambda}
 \]
 - Responsivity Drift (what is constant over the 2 months of measurements?)
 - Signal Noise (fluctuations)
 - Alignment to optical axis (Y-Z centre)
 - Alignment to optical axis (Y-Z angular)
Comparison Procedures ● Measurements at pilot (NRC)

• Sources of Uncertainty ● $u(V_{i,j,m})$
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Participant Lamps
 - Electrical (4)
 - Standard Resistor calibration (lamp current measurement)
 - DVM voltage calibration (lamp current measurement)
 - Lamp current setting
 - Lamp current fluctuations
 - % change in lamp output is approximately 7 times % change in lamp current
 - Optical (3)
 - Photometric (1)
CCPR Key Comparison CCPR-K3.2014

Comparison Procedures • Measurements at pilot (NRC)

• Sources of Uncertainty • $u(V_{i,j,m})$
 • NRC Optical Coordinate System (2)
 • NRC Photometer (5)
 • Participant Lamps
 • Electrical (4)
 • Optical (3)
 • Vertical filament plane (parallel to Z-axis, rotation about Y-axis)
 • Vertical filament plane (parallel to Y-axis, rotation about Z-axis)
 • Lamp to photometer distance (photometer signal $\propto \frac{1}{d^2}$)
 • Photometric (1)
 • Lamp output fluctuations
Comparison Procedures • Measurements at pilot (NRC)

• Sources of Uncertainty • Summary • $u(V_{i,j,m})$

- 4 predominant sources of uncertainty:

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Type</th>
<th>Relative Standard Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC Photometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectral Mismatch Error</td>
<td>B</td>
<td>0.01%</td>
</tr>
<tr>
<td>Responsivity Drift</td>
<td>A</td>
<td>0.05%</td>
</tr>
<tr>
<td>Participant Lamps (optical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Filament Plane</td>
<td>A</td>
<td>0.01%</td>
</tr>
<tr>
<td>Lamp-to-Photometer distance</td>
<td>A</td>
<td>0.03%</td>
</tr>
</tbody>
</table>
Comparison Procedures • Data Analysis

- Sources of Uncertainty
 - 3 sources:
 - Participant LI values
 - NRC comparison measurements
 - Artifact repeatability at NRC
 - Kinds of uncertainties:
 - Type A
 - Type B
 - Uncorrelated
 - Correlated

\[R_{i,j,m} = \frac{I_v(i,j)}{V_{i,j,m}} \left(\frac{\text{cd}}{\text{volt}} \right) \]
Comparison Procedures • Data Analysis

• Sources of Uncertainty • combination of uncertainties*

 • Kinds of Uncertainties:
 • Type A
 • Type B
 • Uncorrelated (uc)
 • Correlated (c)

\[
Q = f(x_i)
\]

\[
u_{uc}^2(Q) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right)^2 \cdot u_{uc}^2(x_i)
\]

\[
u_c^2(Q) = \left[\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right) \cdot u_c(x_i) \right]^2
\]

\[
u_{total}^2(Q) = u_{uc}^2(Q) + u_c^2(Q)
\]

• *GUM, Guides to the expression of uncertainty in measurement, JCGM 100:2008, etc. www.bipm.org
Comparison Procedures • Data Analysis

- Sources of Uncertainty • combination of uncertainties • weighted mean

- Weights \(W_i = \frac{1}{u_i^2} \)
- Normalised \(w_i = \frac{w_i}{\sum w_i} \)

\[
Q = \sum_{i=1}^{n} w_i \cdot x_i
\]

\[
\frac{\partial Q}{\partial x_i} = w_i
\]
CCPR Key Comparison CCPR-K3.2014

Comparison Procedures • Data Analysis

- **Sources of Uncertainty** • combination of uncertainties • weighted mean
 - Type A
 - Type B
 - Uncorrelated
 - Correlated

<table>
<thead>
<tr>
<th>Measured Quantity</th>
<th>Uncertainty</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>$u_A(V_1)$</td>
<td>$u_B(V_1)$</td>
</tr>
<tr>
<td>V_2</td>
<td>$u_A(V_2)$</td>
<td>$u_B(V_2)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>V_n</td>
<td>$u_A(V_n)$</td>
<td>$u_B(V_n)$</td>
</tr>
</tbody>
</table>

| $f(V_i)$ | $u_A^2(f)$ | $u_B^2(f)$ | $\sqrt{u_A^2(f) + u_B^2(f)}$ |
|-------------------|-------------|-------------|
| $f(V_i) = \sum_{i=1}^{n} w_i V_i$ | $u_A^2(f) = \sum_{i=1}^{n} w_i^2 u_A^2(V_i)$ | $u_B^2(f) = \left[\sum_{i=1}^{n} w_i u_B(V_i)\right]^2$ | $\sqrt{u_A^2(f) + u_B^2(f)}$ |

Weighted mean Uncorrelated Correlated Combined
Comparison Procedures • Analysis

• Data analysis

 • Determine final NRC measurement value for each artifact: \(R_{i,j} = \langle R_{i,j,m} \rangle_m \), \(~12\times6=72\) values

 • \(u(R_{i,j}) \) is a combination of NRC measurements \((u_A \text{ and } u_B) \), Participant \((u_A \text{ and } u_B) \) and lamp \(u_A \)

 • Determine final NRC measurement value for each participant: \(R_i = \langle R_{i,j} \rangle_j \), = 12 values

 • \(u(R_i) \) is a combination of the \((u_A \text{ and } u_B) \) components of \(u(R_{i,j}) \)

• Comparison of participant SI candela realisations

 • KCRV (Key Comparison Reference Value)

 • Weighted mean with cut-off

 • Identification of ‘outliers’: deviation from KCRV greater than 6 times their uncertainty

 • Consistency check: Chi-square\((\alpha = 0.05) \) test, \(\chi^2_{0.05}(v = 11) = 19.7 \)

\[R_{i,j,m} = \frac{I_v(i,j)}{V_{i,j,m}} \left(\frac{\text{cd}}{\text{volt}} \right) \]
Comparison Procedures • Analysis

• Comparison of participant SI candela realisations
 • KCRV (Key Comparison Reference Value)
 • Weighted mean with cut-off

\[u_{\text{cut-off}} = \text{average}(u_7 \text{ to } u_{12}) \]
Comparison Procedures • Analysis

• Comparison of participant SI candela realisations
 • KCRV (Key Comparison Reference Value)
 • Weighted mean with cut-off

\[u_{adj}(R_i) = u_{adj}(NMI) + u_{transfer}(R_i) \]

weights \(W_{i,adj} = \frac{1}{u_{adj}(R_i)} \)

normalised \(w_{i,adj} = \frac{W_{i,adj}}{\sum W_{i,adj}} \)

Participant Luminous Intensity uncertainty
Relative standard values
(ordered highest to lowest)

<table>
<thead>
<tr>
<th>Participant</th>
<th>unadjusted</th>
<th>adjusted (u_{adj}(NMI))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>(u_1)</td>
<td></td>
</tr>
<tr>
<td>(u_2)</td>
<td>(u_2)</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td></td>
</tr>
<tr>
<td>(u_6)</td>
<td>(u_6)</td>
<td></td>
</tr>
<tr>
<td>(u_7)</td>
<td>(u_7)</td>
<td></td>
</tr>
<tr>
<td>....</td>
<td>....</td>
<td></td>
</tr>
<tr>
<td>(u_{cut-off})</td>
<td>(u_{cut-off})</td>
<td>(u_{cut-off})</td>
</tr>
<tr>
<td>(u_{11})</td>
<td>(u_{cut-off})</td>
<td>(u_{cut-off})</td>
</tr>
<tr>
<td>(u_{12})</td>
<td>(u_{cut-off})</td>
<td>(u_{cut-off})</td>
</tr>
</tbody>
</table>
CCPR Key Comparison CCPR-K3.2014

Comparison Procedures • Analysis

• Comparison of participant SI candela realisations
 • KCRV (Key Comparison Reference Value)
 • Weighted mean with cut-off

\[R_{KCRV} = \sum_{i=1}^{n} w_{i,adj} \cdot R_i \left(\frac{cd}{volt} \right) \]

\[u^2(R_{KCRV}) = \sum_{i=1}^{n} w_{i,adj}^2 \cdot u^2(R_i) \]

(uncorrelated)

Participant Luminous Intensity uncertainty
Relative standard values
(ordered highest to lowest)

<table>
<thead>
<tr>
<th>unadjusted</th>
<th>adjusted (u_{adj}(NMI))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_1)</td>
<td>(u_1)</td>
</tr>
<tr>
<td>(u_2)</td>
<td>(u_2)</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>(u_6)</td>
<td>(u_6)</td>
</tr>
<tr>
<td>(u_7)</td>
<td>(u_7)</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>(u_j)</td>
<td>(u_j)</td>
</tr>
<tr>
<td>(u_k)</td>
<td>(u_{cutoff})</td>
</tr>
<tr>
<td>....</td>
<td>(u_{cutoff})</td>
</tr>
<tr>
<td>(u_{11})</td>
<td>(u_{cutoff})</td>
</tr>
<tr>
<td>(u_{12})</td>
<td>(u_{cutoff})</td>
</tr>
</tbody>
</table>

NATIONAL RESEARCH COUNCIL CANADA
Comparison Procedures ● Analysis

• Comparison of participant SI candela realisations
 • KCRV (Key Comparison Reference Value)
 • Weighted mean with cut-off
 • Identification of ‘outliers’: deviation from KCRV greater than 6 times their (k=1) uncertainty
 • Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(v = 11) = 19.7$

$$\chi^2_{observed} = \sum_{i=1}^{n} \frac{(R_i - R_{KCRV})^2}{u^2_{adj}(R_i)}$$
Comparison Procedures • Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off
 - Identification of ‘outliers’: deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(v = 11) = 19.7$

IF $\chi^2_{observed} > \chi^2_{0.05}(v)$ (inconsistent!)

THEN add Mandel-Paule adjustment uncertainty s

$$u_{adj}^2(R_i) = u_{adj}^2(NMI) + u_{transfer}^2(R_i) + s^2$$

And REPEAT calculations with various s until ‘consistent’
Comparison Procedures • Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off
 - Identification of ‘outliers’: deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$
 - Calculate the Unilateral Degrees of Equivalence (DOE): D_i

\[
D_i = \frac{R_i - R_{KCRV}}{R_{KCRV}}
\]

\[
u_i^2 = u^2(R_i) + u^2(R_{KCRV}) - 2(w_i \cdot u^2(R_i))
\]

R_i and R_{KCRV} are correlated
Comparison Procedures • Data Analysis
Comparison Procedures ● Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off
 - Identification of ‘outliers’: deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square ($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$
 - Calculate the Unilateral Degrees of Equivalence (DOE)
 - Calculate the Bilateral Degrees of Equivalence

\[
D_{i,j} = \frac{R_i - R_j}{R_{KCRV}}
\]
\[
u_{i,j}^2 = u^2(R_i) + u^2(R_j)
\]

(R_i and R_j uncorrelated)
Comparison Organisation

• Selection of participants, artifacts and protocol

Comparison Procedures

• Comparison measurements and measurement verification
• Data analysis and comparison of participant SI candela realisations
• Write the report
 • Draft A and any revisions, confidential to participants
 • Draft B to CCPR WG-KC for approval (and/or any revisions)
 • Approved Draft B to CCPR for approval
 • Final Report
CCPR KEY COMPARISON CCPR-K3.2014
ACKNOWLEDGEMENTS

W.S. Neil R.J. Douglas
Éric Côté J.C. Zwinkels
12 NMI participants
THANK YOU

Arnold Gaertner• Research Officer• arnold.gaertner@nrc-cnrc.gc.ca