Vehicle Displays Specifications & Measurements

Authors:
Robert Donofrio - Display Device Consultants LLC - Ann Arbor, MI
www.displayconsultants.com
Dr. John Troxell - Consultant
Randy Klimek - Midwest Sales Manager of Konica Minolta Sensing
Conents of Talk

1. Historical Vehicle Displays
2. New Vehicle Displays *
3. Touch Screens*
4. LEDs*
5. Measurement Tools- 2D Photometer, Colorimeter
6 Standards - SAE Automotive J1757, and SID ICDM
* Info from SID VD Symposia in Detroit Michigan
HISTORY OF VEHICLE DISPLAYS

• Early Displays were Alpha-numerics Inked or painted on plates with mechanical analog or digital movements either front or back lighted with incandescent light bulbs.

• In 1980’s Transition to CRT and then VFDs. EL & LEDs and now into AM & PM LCDs

• And when performance improves we may see E-Ink type displays
Historic Dashboard Displays/Instruments

1913 Bugatti

1913 Newton-Bennett

1925 Rolls-Royce
Historic Dashboards Continued

1930 Duesenberg Model SJ
- all Analog

1930 Duesenberg Model J
Some Digital
The CRT and Dashboard Displays (from 1989 SAE Pub)
Single Gun Automotive CRT (1985)

Typical Luminance Measurements

<table>
<thead>
<tr>
<th>Color</th>
<th>Luminance (fL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green (Speedometer)</td>
<td>402</td>
</tr>
<tr>
<td>Yellow (Low Fuel)</td>
<td>214</td>
</tr>
<tr>
<td>Red (Odometer)</td>
<td>165</td>
</tr>
<tr>
<td>Blue (High Beam)</td>
<td>55</td>
</tr>
</tbody>
</table>
The 1980’s and CRT Displays in Autos & Military

- 1983 Buick Riviera 5” Green Monochrome CRT
- 1885-86 Toyota Soarer 6” CRT
- 1986 Toyota CRT - for Navigation and Diagnostics with IR Touch Screen
- 1992 Sumitpmo CRT Touch Screen 320x240 pixels
- 1992 CRT Oldsmobile Trofeo as Trav Tek vehicle GPS Sony System
- 2013 CRTs used in Bradley Fighting Vehicle and the Abrams M1A1 Tank
New Developments in Vehicle Displays & VD Standards

MSTN/LCD In Console (Drivers Information)

TN/LCD In Console (Trip Meter)

TFT LCD Auto monitor (Nav & Audio)

TN/LCD On Dash (Clock)

TN/LCD On Dash (Air Conditioner)

2006
How HUDs (VFDs) Operate (Troxell 2004 SPIE)

Reconfigurable Head Up Display (HUD)

Very high brightness reconfigurable image source:

- Automotive-proven vacuum fluorescent display technology
- Image source brightness: 9600 ftL
- 80 x 40 pixel array, 0.36 mm pixel pitch, 6.4 x 2.8 cm package
- Complete HUD system power consumption: 12W
- OEM and dealer-installed HUD configurations
VFD Design (Troxell 2009)

Figure 2. Schematic diagram of reconfigurable AMVFD. CMOS bistable latches control conduction state of high voltage p-MOS pixel driver transistors, which in turn control light emission from each individual pixel. Total electron accelerating voltage ($V_A = 60\, \text{V}$).
HUDs (Stringfellow 2009)

News Flash!
Significant growth seen in Automotive head up Displays

GM Vehicles with Head Up displays

Chevy Corvette Cadillac XLR Cadillac STS
CMC Acadia 2010 LaCrosse 2011 Creada

R.L. Donofrio DDC 2013 CORM
Presentation
More HUDs (Stringfellow 2009)
VD Technology History - Denso

(V)FPD History (2007 data)
VD Developments updated to 2007-10 Denso
2013 Infinity Displays
(IHS) Automotive Display Strategies

UConnect Touch is designed to implement a high-user experience, while adding functions and features.

- Adding the extra area below the traditional sized display allows for the presence of fixed buttons that can be updated, edited, and changed over time as Chrysler see’s fit. (Which cannot be done with physical buttons)

- Since the lower menu is simply part of a larger screen, the whole experience is very nicely integrated.

*Fixed lower menu only disappears when the vehicle’s rear camera is activated.
(IHS) Lexus

Automotive Display Strategies – Lexus GS with Remote Touch

- Highlighted section at the left side is the traditional design for Lexus navigation systems.
- Highlighted section at the right side is the new expanded area for Lexus infotainment.
- The left side of the wireframe acts as the full functional output section (navigation, settings, menus, trip information, Enform Apps, audio, etc.)
- The right side allows for a quick access to main HVAC, Audio, and Trip Information.
- Splitscreen is rendered with nearly every function.*

- Lexus implemented a new splitscreen display into the 2013 GS in conjunction with the Remote Touch HMI.
- The change of the display was made because older Lexus systems do not enable users to see information from audio, phone, and other systems while on navigation screens. The removal of the touch screen was done so that Lexus could move its entire display atop the dash, closer to the driver’s line of sight.
- Therefore, this expanded area gives the infotainment designers the functionality of a “twin-display” without implementing two displays. This also does not sacrifice Lexus’ easy-to-read fonts, menus, or icons.*

*Splitscreen is rendered in almost every functional display. From the menu above, the map is on top right, the phone is on top left, and BT audio is on bottom left.
Automotive Display Strategies – Emerging Twin Displays Trend

- 2013 Acura RLX Concept Interior HMI

Some sort of ICD...

Steering Wheel Controls

Acura Rotary Controller

8.0-inch top display

7.0-inch touch display

(IHS) Acura
Auto Display Market Leaders

- Optrex
- AUO

2013 Audi A3 MMI Touch Center Stack

2013 Dodge Dart Uconnect Touch Center Stack

Cadillac SRX Round Color ICD

BMW X5 Navigation
Main Display Categories

- Cluster/instrument panel/Driver Information Display (DID)
 - DID are replacing traditional analog instrument displays in front of the driver.
 - DIDs will be used by many of the auto's electronic system such as telematics, navigation and traditional driving information.
 - LCD, OLED
 - LTPS – curved displays
 - All In-line market
 - Main sizes – 2-in to 4-in

- Multifunction Head Unit/Center Information
 - Located in the auto's center area and are used by telematics, navigation, music systems and comfort control system - Infotainment
 - LCD with TOUCH
 - In-line and aftermarket (navigation)
 - Main sizes – 5.8-in to 7-in to 9-in
 - Center console
 - 2DIN allows for 6.5-in QVGA as main size, Europe shifted from 5 to 6.5-in to 7-in
 - Japan shifted from 5.8-in to 6.95-in

(iSupply) Display Categories
(ATMEL) Touch Screens
Main Applications

- Touchscreens/Touchpads – Bringing the iPad® Experience Into the Car
- Buttons, Sliders and/or Wheels (BSW) – Replacing Mechanical Switches and Knobs with a Simple Touch
- Proximity Detection – Smart Sensing of Driver Intention to Interface with the Car
JDI Automotive Displays
MicroVision HUD

MicroVision Advantages

- **Brightness**
 - >15,000 cd.m\(^{-2}\) for a 10° x 4° FOV

- **Contrast**
 - ✓ 25,000:1 dynamic
 - ✓ 300:1 checkerboard

- **Color saturation 245%** of sRGB

- **No “background glow”**
 - Perfect for night driving
 - Ideal for Augmented Reality (AR) applications
Osram LED RELIABILITY

- Aviation L70 >10-20Khrs
- Automotive interior L50 > 7-10Khrs
- Automotive Exterior L70 > 7-10Khrs
- LCD Backlighting L70 > 30Khrs
- Lifetime ---------------10,000 hrs to
 70% brightness

Packaging ---------------< 5mm Deep

Info from Osram Sylvania LEDs for Autos and projection systems

R.L. Donofrio DDC 2013 CORM Presentation
(Delco) DISPLAY ATTRIBUTES and TARGETS

- Luminance ---1000 cd/m2
- Contrast Ratio (@ all viewing angles) --------------2000:1
- Sunlight Viewability --------------------------------10:1 @ 45k Lux
- Color Performance ----------------------------------100% NTSC(1987)
- Resolution (video) ---------------------------------1280 x 480
- Operation Temperature Range ----------------------- -40C / +85C
Some Measurement Tools

- Photometer
- Colorimeter
- 2D Photometer/Colorimeter
- Spectro-radiometer
- etc
2D Measurements on Simulated Automotive Display

Example of using 2D Photometer/Colorimeter to evaluate the color of an Automotive Display
(VD) Standards Organizations
SAE J1757

- This SAE Standard defines a consistent terminology and metrology for vehicular Flat Panel Displays (FPD). It will allow the user to measure the automotive compliance of the FPD.
Contrast (C) and Contrast Ratio (CR) are related by the formula:

\[C = CR - 1 \quad \text{(Eq. 3)} \]

3.7 Central Critical Specular Line (Central CSL)

It is defined as the line from the center of the display to the center of the driver's eye, including the eye (see ISO 4013 for eye-ellipse definition). This line is within the Driver's Cone, and may be different than Vehicle CSL (depends on display position, orientation, and vehicle openings/windows).

3.8 Critical Light Source Cone

It is generated from the Specular Light Source Cone with the apex angle increased 10 degrees all around (see Figure 1). Note: Critical Light Source Cone includes Specular Light Cone, Central Critical Specular Light Direction (Central CSLD), and/or Vehicle CSLD. Ambient light coming from directions within this cone toward the display determines the contrast (and legibility).

3.9 Central Critical Specular Light Direction (Central CSLD)

It is defined as the line symmetrical to Central CSL in respect to the normal direction to the center of the display. See Figure 1 for more information. Add white shirt direction.

![FIGURE 1 - CRITICAL LIGHT ILLUMINATION: CRITICAL SPECULAR LINE (CSL), CRITICAL SPECULAR LIGHT DIRECTION (CSLD) AND CRITICAL SPECULAR LIGHT CONE (\(\alpha = 10 \) DEGREES)](image)

3.10 Diffuse-Lambertian Reflection (\(D_L \))

Is a diffuse reflection (a scattering of light out from the specular direction) whereby the observed luminance is independent of observation direction and only depends upon the luminance falling upon the surface. The luminous intensity from a Lambertian surface is given by \(I_L = I_L \), where \(I_L \) is the luminous intensity in the normal direction. A flat (matte) paint, barium sulfate (BaSO₄) reflection coating, pressed polytetrafluoroethylene or barium sulfate powders are typical Lambertian-like diffusing surfaces.

3.11 Diffuse-Haze Reflection (\(D_H \))
Night Time Driving Issues

• Bright Head lights both from on coming cars and cars in back of you
• Glare
• Haze
(U of M) Vehicle Occupant Deaths 1987-2003
CONCLUSIONS

We have shown:
• a brief view of a century of developments for Automotive Displays
• That displays are now found all over the inside of the vehicle
• Display Technology has given us improved luminance, contrast etc.
• New measurement tools have given us faster ways of evaluating displays
• Improved Standards to compare results
• Improvements in displays and standards are still needed in night time driving with glare, older drivers etc.
• In J1757 we are presently trying to determine measurement methods for the day time glare of white shirts on a display.
Some References

• SAE J1757 VFPD Standard
• SID ICDM Standard Measurement Techniques
• Silviu Pala, “VFPD History” 2012 SID VFPD Symposium at U of M in Dearborn MI.